
Digitalization of Food

Properties using Python

with Applications

Prepared by:

Dr. Gokhan Bingol (gbingol@pebytes.com)

October 30, 2023

(Initial publication: December 05, 2022)

Document version: 2.0

Updates will be available at: https://www.pebytes.com/pubs

Follow on YouTube: https://www.youtube.com/@sciencesuit

1

mailto:gbingol@pebytes.com
https://www.pebytes.com/pubs
https://www.youtube.com/@sciencesuit

Table of Contents
 1. INTRODUCTION...3

 2. FUNDAMENTALS...5

 2.1. Construction of a Food Object..5

 2.2. Comparison of Food Objects...8

 2.3. Mathematical Operations...10

 2.3.1. Addition...10

 2.3.2. Subtraction..12

 2.3.3. Multiplication..14

 2.3.4. Pitfalls..14

 2.4. Thermo-physical Properties...16

 2.4.1. Specific heat capacity (Cp)...16

 2.4.2. Thermal conductivity (k)...16

 2.4.3. Density (ρ)...16

 2.5. Dielectric Properties..18

 2.5.1. Meat and meat products..18

 2.5.2. Fruits and vegetables...18

 2.5.3. Cereal grains..19

 2.6. Water Activity..20

 2.6.1. Raoult’s law...20

 2.6.2. Money-Born equation...21

 2.6.3. Norrish equation..21

 2.6.4. Ferro Fontan-Chirife-Boquet equation..21

 2.6.5. Change of aw with temperature..22

 2.6.6. Method selection for aw prediction..23

 3. APPLICATIONS...24

 3.1. Material Balance..24

 3.2. Energy Balance..27

 3.3. Freezing...29

 3.3.1. Unfrozen food...29

 3.3.2. Frozen food...29

 3.3.3. Estimation of initial freezing temperature...30

 3.3.4. Estimation of ice fraction..30

 3.4. Water Activity / Drying...33

 3.5. Heat Transfer...38

 4. DISCUSSION..42

 5. ACKNOWLEDGMENT...44

 6. REFERENCES..45

2

 1. INTRODUCTION

In broad terms digitalization refers to the process of utilizing digital technologies to change the

core of business conduct. If correctly implemented, digitalization can lead to digital

transformation and thereby improve productivity, reduce costs and pave the way for the future

of manufacturing1. A literature survey by Demartini et al. (2018) found that the topic of the

digitalization in the food industry has been studied since 2016 with the common keywords

associated “Factory of the future” and “Food”. The authors stated that the food companies are

slower to adopt digital technologies. Nonetheless like all processing industries, the food

industry is also seeking ways to enhance efficiency, reduce costs and become more

environmentally friendly. Adoption of digitalization can play a significant role in achieving

these goals.

Digitalization of food is challenging and Britannica2 defines food as “substance consisting

essentially of protein, carbohydrate, fat, and other nutrients …”. Not only food has a complex

composition, but also comes in various shapes, colors, odors, etc. Therefore, to tackle the high

level of complexity, some level of abstraction was required. Therefore, in this work food was

considered to consist of macronutrients (carbohydrate, lipid and protein) and also water, ash

and salt. This is consistent with USDA NAL Database3 which has compositional data of

approximately 9000 food items. This level of abstraction facilitates various tasks. However, it

does not exempt us from the complexity of carbohydrates, lipids and proteins that are divided

into sub-groups with different physical and thermal properties.

In programming languages, two major trends can be seen: i) procedural programming, ii)

object-oriented programming. Several object-oriented programming languages support

operator overloading4 (e.g. C++, Python etc.). These languages allow definitions such as

Food=Food+Food , therefore enabling construction of new food items from existing ones,

such as after a mixing operation.

Foods are also subject to various operations that may require the knowledge of different

physical properties. For example, to calculate the heat required to raise the food's temperature

requires specific heat capacity(Cp) whereas heat transfer modeling requires thermal

conductivity and Cp. For microwave processing, dielectric properties should also be known.

1 https://social-innovation.hitachi/en-us/think-ahead/manufacturing/industrial-digitalization-for-smart-manufacturing/
2 Britannnica, https://www.britannica.com/topic/food
3 FoodData Central Data, https://fdc.nal.usda.gov/download-datasets.html
4 Wikipedia, https://en.wikipedia.org/wiki/Operator_overloading

3

https://en.wikipedia.org/wiki/Operator_overloading
https://fdc.nal.usda.gov/download-datasets.html
https://www.britannica.com/topic/food
https://social-innovation.hitachi/en-us/think-ahead/manufacturing/industrial-digitalization-for-smart-manufacturing/

In this document, the complexities of calculation/automation of various food properties, as

well as their use in food process calculations will be reduced by using the scisuit’s5 open-

source food class that can be found at GitHub6. Reduction in computational complexities not

only will shorten the amount of work but will also enable to model a wider range of processes.

The target audience of this work is food process engineers. This document assumes that the

reader already has some knowledge in food/chemical engineering concepts and basic to

intermediate level of understanding of Python. The code used in this document was generated

in a Windows 11 operating system using Visual Studio Code (1.83.1) environment, running

Python 3.10.6. Detailed examples of applications in food process engineering will be

presented.

5 At least v1.1.2 (https://pypi.org/project/scisuit/)
6 GitHub, gbingol (Gokhan Bingol) · GitHub

4

https://github.com/gbingol
https://pypi.org/project/scisuit/

 2. FUNDAMENTALS

 2.1. Construction of a Food Object

In order to perform any digital operations on food, it must first be defined and constructed.

Food is considered as an object comprised of a combination of carbohydrate (CHO), fat,

protein, water, ash and salt. It should be noted that salt has been considered as a separate entity

than ash as it has considerable effect on electric and dielectric properties.

To define a food object, first scisuit’s food process engineering (fpe) library, which is part of

engineering library (eng), should be imported, import scisuit.eng.fpe. For example, milk may

have approximately 88.13% water, 3.15% protein, 4.80% CHO, 3.25% lipid and 0.67% ash.

Therefore, to define milk as a food object:

import scisuit.eng.fpe as fpe

milk = fpe.Food(water=88.13, protein=3.15, cho=4.8, lipid=3.25, ash=0.67)
print(milk)

Type = Food
Weight (unit weight) = 1.0
Temperature (C) = 20.0
water (%) = 88.13
cho (%) = 4.8
protein (%) = 3.15
lipid (%) = 3.25
ash (%) = 0.67
aw = 0.98

Note that, although it is generally easier to work with percentages it is possible to specify

fractions as well, e.g. water=0.8813. It is seen from the output that the milk has a weight of 1

unit where the unit of the weight can be anything from gram, kg to lbs. Although the

temperature was not explicitly set, a default temperature was assigned as 20°C. Here it should

be noted that behind the scenes it is possible to express weight as a fraction and work with the

fraction; however, this is not possible with the temperature itself. Therefore, Celsius was

chosen for the unit of temperature. In the output only the percentages of available ingredients

are listed. If the result of the computation of water activity (aw) is different from None then aw

is included in the output as well.

5

When defining a Food object, if the sum of the percentages was not equal to 100%, then it

would have been adjusted to be 100%.

f = fpe.Food (water=40, protein=20)
print(f)

Type = Food
Weight (unit weight)=1.0
Temperature (C)=20.0
water (%)= 66.67
protein (%)= 33.33
aw=0.908

In the above example, adjustment is simply made by dividing with the sum, such as

water=40/(40+20), protein=20/60.

In the example on page 5, although the variable name was milk, there is no accurate

mechanism to have a prior knowledge that it can be a dairy product let alone milk itself.

However, in the literature, there are specific computations, such as freezing temperature, water

activity or dielectric properties, available for different food groups. To take advantage of these

specific computations and therefore increase accuracy, the variable, namely milk, can also be

constructed in the following way:

milk = fpe.Dairy(water=88.13, protein=3.15, cho=4.8, lipid=3.25, ash=0.67)
print(milk)

Type = Dairy
Weight (unit weight) = 1.0
Temperature (C) = 20.0
water (%) = 88.13
cho (%) = 4.8
protein (%) = 3.15
lipid (%) = 3.25
ash (%) = 0.67
aw = 0.98

Now that the variable milk is defined to be a dairy product, any equations specialized for dairy

products will be used for milk. Although USDA’s classification7 for foods is rather

comprehensive and detailed, for the sake of simplicity 10 sub-groups for foods were assumed:

7FoodData Central, https://fdc.nal.usda.gov/fdc-app.html#/

6

https://fdc.nal.usda.gov/fdc-app.html#/

1. Beverage
2. Cereal
3. Dairy
4. Fruits

5. Juice
6. Legume
7. Meat
8. Nut

9. Sweet
10. Vegetable

Although, in the above examples, milk was defined using 5 ingredients, it is not necessarily the

case. For example, grape can be defined as a food item as well:

grape= fpe.Fruit (water =80, cho=20)
print(grape)

Type = Fruit
Weight (unit weight)=1.0
Temperature (C)=20.0
water (%)= 80.0
cho (%)= 20.0
aw=0.976

7

 2.2. Comparison of Food Objects

Let f1, f2 be two different food objects. f 1=f 2 if and only if f1 and f2 have the same ingredients

in exact quantities and belong to the same base- or sub-group type. The following example

should clarify the concept.

#Example 1 : different ingredients (protein vs cho)
f1= fpe.Food (water =80, protein=20)
f2= fpe.Food (water =80, cho=20)
print(f"Different ingredients: {f1 == f2}") # == is the comparison operator

#Example 2: different % of same ingredients (cho’s different)
f1= fpe.Food (water =80, cho=20)
f2= fpe.Food (water =60, cho=40)
print(f"Same ingredients different %: {f1 == f2}")

#Example 3 : same % and same ingredients
f1= fpe.Food (water =40, cho=10)
f2= fpe.Food (water =80, cho=20)
print(f"Same ingredients and %: {f1 == f2}")

#Example 4: same % and ingredients but different sub-groups (Dairy vs Fruit)
f1= fpe.Dairy (water =80, cho=20)
f2= fpe.Fruit (water =80, cho=20)
print(f"Different sub-groups: {f1 == f2}")

#Example 5: same % and ingredients but different groups (Food vs Fruit)
f1= fpe.Food (water =80, cho=20) #base
f2= fpe.Fruit (water =80, cho=20) #sub-group
print(f"Different groups: {f1 == f2}")

Different ingredients: False
Same ingredients different %: False
Same ingredients and %: True
Different sub-groups: False
Different groups: False

Examples 1-3 are fairly straightforward to understand; however, examples 4 & 5 require

further clarification which is presented in the following figure:

8

Fig. 2.1: Simple food hierarchy

In Fig. (2.1) for simplicity only 5 nodes are presented and on the top node, the Food class is

found. Below the Food class 4 specialized classes, which are sub-classes of Food class, are

shown. At this point it is helpful to understand that in object oriented programming languages a

sub-class is a super class but a super class is not a sub-class. Therefore, for example, a Dairy is

a Food but a Food is not (necessarily) a Dairy. Thus when equality operator is called, initially,

the node type (class type) is checked and if the class types are different than f1 and f2 are

considered as different. If the class types are the same, then the composition is inspected and if

the compositions are same then f1 and f2 are considered as equal.

Although at this stage, the above assumptions are satisfactory for many applications it is still

not 100% accurate. Consider apples and oranges, which belong to class Fruit. If the low

protein contents (<1%) are omitted both apples and oranges have very similar composition in

terms of CHO and water and thus would be considered as equal. However, needless to say, we

should not mix apples and oranges since as shown below they belong to different sub-classes:

Fig. 2.2: Simple fruit hierarchy

It is seen that without any further information (color, texture, etc.) composition alone cannot be

the sole decision maker and the class of the food item must taken into account as well.

9

Food

Dairy Fruit Meat Vegetable

Fruit

Apple Orange

 2.3. Mathematical Operations

The food object supports some essential arithmetic operations: Let f1, f2, f3 and f4 denote

different food items and a and b an arbitrary numbers.

 2.3.1. Addition

In terms of unit operations, addition can be considered as mixing of different food items.

a⋅f 1+b⋅f 2=f 3 (2.1)

Addition of two food items could yield a food item that is different than the operands (f1, f2). If

f1 and f2 belong to the same sub-group then f3 will belong to the same sub-group. Otherwise it

will belong to the base of f1 and f2.

f1= fpe.Food (water =80, cho=20)
f2= fpe.Food (water =60, cho=40)

f3 = f1 + f2
f4 = 2*f1 + 3*f2

print(f3)
print(f4)

Type = Food
Weight (unit weight) = 2.0
Temperature (C) = 20.0
water (%) = 70.0
cho (%) = 30.0
aw = 0.959

Type = Food
Weight (unit weight) = 5.0
Temperature (C) = 20.0
water (%) = 68.0
cho (%) = 32.0
aw = 0.955

Here, it should be noticed that behind the scenes mass balance was performed automatically. It

has already been mentioned that if the temperature was not explicitly set, the temperature

would be set to 20°C by default.

If f1 and f2 were at different temperatures, then energy balance would be performed as well, as

demonstrated in the following script:

10

#Continuing from the previous example
f1.T = 30
f2.T = 50

f5 = 2*f1+f2
print(f5)

Type = Food
Weight (unit weight) = 3.0
Temperature (C) = 36.04
water (%) = 73.33
cho (%) = 26.67

Assuming the reference temperature as 0°C, energy balance is computed in the following way:

Mass balance:

min=m1+m2=mout (2.2)

Energy balance:

E in=m1⋅cp1⋅T 1+m2⋅cp2⋅T 2=Eout (2.3)

The energy exiting the system can be expressed:

Eout=mout⋅cpaverage⋅T mix (2.4)

where average Cp is,

Cpaverage=
m1⋅Cp1+m2⋅Cp2

m1+m2
(2.5)

Note that in Eq. (2.5), specific heat capacity was assumed to be linear in terms of temperature.

This assumption is reasonable since the leading coefficient of the polynomials in Eq. (2.8) are

in the order of 10-6.

Finally, let’s observe the effect of adding i) Same sub-group, ii) a sub-group and a base, iii)

different sub-groups:

#both are Dairy (same sub-group)
f1= fpe.Dairy (water =80, cho=20)
f2= fpe.Dairy (water =60, cho=40)

print(f1 + f2)

11

#sub-group + base (Meat + Food)
f3= fpe.Meat (water =80, cho=20)
f4= fpe.Food (water =60, cho=40)

print(f3 + f4)

#sub-group + sub-group (Fruit + Vegetable)
f5= fpe.Fruit (water =80, cho=20)
f6= fpe.Vegetable (water =60, cho=40)

print(f5 + f6)

Type = Dairy
water (%) = 70.0
cho (%) = 30.0
Type = Food
water (%) = 70.0
cho (%) = 30.0

Type = Food
water (%) = 70.0
cho (%) = 30.0

The idea here is simple when visualized in terms of Fig. (2.1). Addition of classes belonging to

same node yields that particular node type, whereas, addition of different nodes yields the base

class (Food). Therefore, addition of f1 and f2 yielded Dairy, whereas f3+f4 and f5+f6 yielded the

base class type, Food.

 2.3.2. Subtraction

Subtraction can be likened to extraction, drying, etc. and is defined as follows:

f 1−f 2=f 3 (2.6)

It should be noted that, similar to addition, subtraction operation could give a food item that is

different than the operands (f1, f2). Unlike addition where temperatures and the compositions of

f1 and f2 could be different, the following conditions must be met for Eq. (2.6) to succeed:

1. f1 and f2 must belong to the same group/sub-group.

2. f1 must have all of the ingredients f2 has and moreover the amount in f2 cannot be
greater than f1,

3. The temperatures of f1 and f2 must be equal.

12

Let’s turn milk into milk powder by removing water, in other words we are performing a

drying operation:

milk = fpe.Dairy(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)
water = fpe.Food(water=100)

#remove water from milk
powder = milk - 0.87*water
print(powder)

AssertionError: Foods must have same type

Now that we have violated rule #1, an error has been raised. But logically we know that we can

remove water from milk and get milk powder, which is a dairy product. Therefore, at this point

we need to change our approach:

#generalize milk and water as Food
milk = fpe.Food(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)
water = fpe.Food(water=100)

#remove water from milk (Food - Food = Food)
powder = milk - 0.87*water
print(powder)

#convert “general” powder into a dairy powder
dairy_powder = fpe.Dairy(**powder.ingredients()) #ingredients returns a Python dictionary
print(dairy_powder)

Type = Food
Weight (unit weight) = 0.13
water (%) = 8.69
cho (%) = 36.92
protein (%) = 24.23
lipid (%) = 25.0
ash (%) = 5.15

Type = Dairy
Weight (unit weight) = 1.0
water (%) = 8.69
cho (%) = 36.92
protein (%) = 24.23
lipid (%) = 25.0
ash (%) = 5.15

13

 2.3.3. Multiplication

a⋅f 1=b⋅f 1=f 1 (2.7)

There is no logical definition as food=food×food, therefore unlike addition or subtraction,

which yielded new food materials, multiplication does not yield a new one. It only changes the

unit weight.

f1 = fpe.Food (water =60, cho=40)
f2 = 2*f1

print(f2)

Type = Food
Weight (unit weight) = 2.0
Temperature (C) = 20.0
water (%) = 60.0
cho (%) = 40.0
aw = 0.937

Overloading (redefinition) of multiplication operator is necessary to be able to perform

addition or subtraction operations. Consider the following code snippet: f4 = 0.2*f1 + 0.8*f2

First of all, here we are implicitly saying that f4 is comprised of 20% f1 and 80% f2. To perform

the addition, behind the scenes temporary food materials from 0.2*f1 and 0.8*f2 are created,

say temp1 and temp2, respectively. Now f4 can be computed as f 4=temp1+temp2. Therefore,

when addition is performed the input weights can be taken into account to correctly compute

the composition and temperature of f4.

 2.3.4. Pitfalls

It has been mentioned in section 2.3.1 and that addition and subtraction operations could give

a new food item. Conceptually this is correct, however, mathematically using the new food

object as is will most likely result in error.

Let’s demonstrate it with a simple example:

f1 = fpe.Food (water =80, cho=20)
f2 = fpe.Food (water =60, cho=40)

#create a food mix (weight=1+1=2)
f_mix = f1 + f2

14

milk = fpe.Food(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)
water = fpe.Food(water=100)

#create a food powder (weight=1-0.87=0.13)
powder = milk - 0.87*water

#create another food item from the mix and the powder
newmix = 2*powder + 3*f_mix

print(newmix)

Type = Food
Weight (unit weight) = 6.26 (=2*0.13 + 3*2) #ERROR
Temperature (C) = 20.0
water (%) = 67.45
 ...

There is error in weight and percentages of ingredients of newmix since f_mix and powder were

just result of mathematical operations. Before we could use f_mix and powder as independent

food items, they must to be normalized. This is simply done by calling the normalize member

function.

f_mix.normalize()
powder.normalize()

#mixing f_mix and powder
newmix = 2*powder + 3*f_mix
print(newmix)

Type = Food
Weight (unit weight) = 5.0 #(=2*1.0 + 3*1.0), 1.0 is due to normalization
Temperature (C) = 20.0
water (%) = 45.48
cho (%) = 32.77
protein (%) = 9.69
lipid (%) = 10.0
ash (%) = 2.06
aw = 0.863

The normalize member function simply resets the weight to 1.0. After normalizing f_mix and

powder, the weight of newmix is the expected 5 units and also note the differences in

percentages of ingredients.

15

 2.4. Thermo-physical Properties

Eqs. 2.8 to 2.10 are taken from Choi & Okos (1986). Unless otherwise stated, T are in °C.

 2.4.1. Specific heat capacity (Cp)

CpWater=4.1289−9.0864⋅10−5⋅T+5.4731⋅10−6⋅T 2

CpProtein=2.0082+1.2089⋅10−3⋅T−1.3129⋅10−6⋅T 2

CpLipid=1.9842+1.4733⋅10−3⋅T – 4.8008⋅10−6⋅T 2

CpCHO=1.5488+1.9625⋅10−3⋅T – 5.9399⋅10−6⋅T 2

CpAsh=1.0926+1.8896⋅10−3⋅T−3.6817⋅10−6⋅T 2

CpSalt=0.88

(2.8)

where the unit of Cp is kJ/kg°C and Cp of salt is from Engineering Toolbox8.

 2.4.2. Thermal conductivity (k)

k Water=4.57109⋅10−1+1.7625⋅10−3⋅T−6.7036⋅10−6⋅T 2

k Protein=1.7881⋅10−1+1.1958⋅10−3⋅T−2.7178⋅10−6⋅T 2

k Lipid=1.8071⋅10−1−2.7604⋅10−4⋅T−1.7749⋅10−7⋅T 2

k CHO=2.0141⋅10−1+1.3874⋅10−3⋅T−4.3312⋅10−6⋅T 2

k Ash=3.2962⋅10−1+1.4011⋅10−3⋅T−2.9069⋅10−6⋅T 2

k Salt=5.704 at 20°C

(2.9)

where the unit of k is W/m°C and k value of salt is taken from (Riedel 1962).

 2.4.3. Density (ρ)

ρWater=997.18+3.1439⋅10−3⋅T−3.7574⋅10−3⋅T 2

ρ Protein=1329.9−5.1840⋅10−1⋅T

ρ Lipid=925.59−4.1757⋅10−1⋅T

ρCHO=1599.1−3.1046⋅10−1⋅T

ρ Ash=2423.8−2.8063⋅10−1⋅T
ρ Salt=2165

(2.10)

where the unit of ρ is kg/m3 and density of salt is found from Wikipedia9.

Let’s see the thermo-physical properties in action:

8Engineering Toolbox, https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html

9 Wikipedia, https://en.wikipedia.org/wiki/Sodium_chloride

16

https://en.wikipedia.org/wiki/Sodium_chloride
https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html

milk = fpe.Food(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)

print(f"cp={milk.cp()}")
print(f"rho={milk.rho()}")
print(f"k={milk.k()}")

cp=3.852 10

rho=1041.6
k=0.4569

Now let’s change the temperature to 50°C:

milk.T = 50
print(f"cp={milk.cp()}")
print(f"rho={milk.rho()}")
print(f"k={milk.k()}")

cp=3.865
rho=1033.3
k=0.494

It is seen that ρ decreased from 1041.6 to 1033.3 kg/m3 as temperature increased from 20 to

50°C. To see how ρmilk changes with temperature in the range of say 10 to 75°C, the following

code is needed:

Fig. 2.3: Change of milk’s density with temperature

import scisuit.plot as plt

T = range(10, 80, 5)
rho = [milk.rho(v) for v in T]

plt.scatter(x=T, y=rho)
plt.xlabel("Temperature(°C)")
plt.ylabel("Density (kg/m3)")
plt.show()

10 Actual Python output is “cp=3.8521885907719993” which has been manually rounded for presentation purposes. Similar
reasoning applied elsewhere as well.

17

 2.5. Dielectric Properties

Dielectric properties of foods are affected by many factors, such as temperature and moisture

content of food and frequency of the microwaves. Therefore, there are several equations for

estimation of dielectric constant (εʹ) and loss factor (εʺ) in literature for particular food items.

Gulati & Datta (2013) and Calay et al. (2007) present predictive equations for certain food

categories, such as cereal grains, meat and meat products and fruits and vegetables.

 2.5.1. Meat and meat products

If the meat contains salt (0-6%) and T (°C)=[0, 70]:

ϵ '=−52−0.03T +1.2 Xw+(4.5+0.07T) X salt

ϵ "=−22−0.013T+0.48 Xwater+(4+0.05T) X salt
(2.11)

If the fat content (0-20%) is known and T (°C)=[-30, 0]:

ϵ '=29.3+0.076 T−0.3 Xw−0.11 X fat (2.12)

If T (°C)=[-30, 0]:

ϵ '=23.6+0.0767 T−0.231 Xw

ϵ "=9.8+0.028T−0.0117 Xw
(2.13)

If the mass fraction of ash is known:

ϵ '=Xw(1.0707−0.0018485T)+M ash 4.7947+8.5452

ϵ "=Xw(3.4472−0.01868T+0.000025T 2)+Mash(−57.093+0.23109 T)−3.5985 (2.14)

where Xw is the moisture content (wet basis), Xfat and Xsalt are fat and salt contents in

percentages and Mash is the mass fraction of ash.

 2.5.2. Fruits and vegetables

If f=2.45 GHz and T(°C)=[0, 70] and Xw (%)=[50, 90]:

ϵ '=2.14−0.104T +0.808 Xw

ϵ "=3.09−0.0638T+0.213 Xw
(2.15)

18

If f=[0.9, 3] GHz and T (°C)=[0, 70] and Xw (%)=[50, 90]:

ϵ '=−12.8−0.103 T+0.788 Xw+5.49 f
ϵ "=10.1+0.008 T+0.221 Xw−3.53 f (2.16)

If neither of the above conditions are matched, then the following equations are used:

ϵ '=38.57+0.1255+0.456 Xw−14.54 X ash−0.0037 T Xw+0.07327 X ash T

ϵ "=17.72−0.4519 T+0.001382T 2−0.07448 Xw+22.93 Xash−13.44 Xash
2

 +0.002206 Xw T+0.1505 X ash T
(2.17)

where Xw, Xash are moisture and ash contents (%), respectively.

 2.5.3. Cereal grains

If f=[2, 3] GHz and T (°C)=[10, 30] and Xw (%)=[3, 30]:

ϵ '=1.71+0.0701 Xw

ϵ "=0.12+0.00519 Xw
(2.18)

If f=[2, 3] GHz and T (°C)=[10, 30] and Xw (%)=[3, 30]:

ϵ '=1.82+0.0621 Xw−0.0253 f
ϵ "=1.72+0.066 Xw−0.0254 f +0.0003 ρ d

(2.19)

If none of the above conditions are matched, then the following equations are used:

ϵ '=(1+
0.504 Xw ρ b

√Xw+logf)
2

ϵ "=0.146ρ b
2+0.004615 Xw

2 ρ b
2(0.32 log(f)+1.743 / log(f)−1)

(2.20)

where f is the frequency and ρb is the bulk density (kg/m3).

19

 2.6. Water Activity

The definition of water activity (aw) is (Scott 1953):

Water activity= Water vapor pressure of food
Water vapor pressure of pure water (2.21)

It is seen from Eq. (2.21) that, aw is not directly related to the amount of ingredients but more

to how ingredients bind the water which can be through various mechanisms. Therefore, to

accurately estimate aw a truly finer detail of knowledge on ingredients is required than the

definition of Food object presented in section 2.1. However, it is still possible to estimate a

rough value of aw using the predictive equations. Several equations for prediction of water

activity are listed in the book by Barbosa-Cánovas et al. (2007). Since we will be using the

term solute actively in this section, let’s first define it:

Solute=CHO+lipid+ protein+ash (2.22)

 2.6.1. Raoult’s law

Raoult’s law is the basic equation for computing aw of ideal solutions (Şahin and Sumnu 2006):

aw=
Xw

Xw+(M w

M s
)⋅X s

(2.23)

where X is the mass fraction and subscripts w and s denotes water and solute, respectively, and

M stands for molecular weight. scisuit uses a slightly modified version of Eq. (2.23):

aw=
Xw

Xw+(M w

M s
)⋅X s+2⋅(Mw

M salt
)⋅X salt

(2.24)

20

 2.6.2. Money-Born equation

The equation is proposed by Money and Born (1951) and is used for calculating aw of sugar

confections, such as jams, fondant creams and boiled sweets (Barbosa-Cánovas et al. 2007).

aw=
1

1+0.27 n (2.25)

where n is defined as:

n=
mCHO

180.16

(2.26)

Note from Eq. (2.26) that scisuit assumes that CHO is made up of fructose (molecular weight

of fructose is 180.16 g/mol).

 2.6.3. Norrish equation

Proposed by Norrish (1966) and is useful for large concentrations of solute and used for

non-electrolyte solutions containing both single and multiple solutes (Barbosa-Cánovas et al.

2007). In generalized form the equation can be expressed as:

ln aw=ln X H 2 O+∑ K i(X i)
2

∑ (X i)
2

⋅(1−X w)
2

(2.27)

where X is the mole fraction and K is the empirical constant for the solute.

 2.6.4. Ferro Fontan-Chirife-Boquet equation

Developed by Fontan et al. 1981 (Barbosa-Cánovas et al. 2007).

aw=Xw [eKm⋅X s
2] (2.28)

where Xw and Xs is mole fraction of water and solute, respectively, and K is the correlating

constant for the solute. To compute the mole fractions, it was assumed that the amount of

fructose, glycerol and alanine were equal to the amount of CHO, lipid and protein,

respectively. Thus, the mole number (n) for CHO (nCHO) was computed using Eq. (2.26),

whereas nLipid and nProtein were computed using the following equation:

21

nLipid=
mLipid

92.0944
 and nProtein=

mProtein

89.09
(2.29)

Km in Eq. (2.28) was computed using Ferro Fontan-Chirife-Boquet equation as follows:

K m=∑
s=1

n

K s C s[Ṁ
M s

] (2.30)

where KCHO, KLipid and KProtein are -2.15, -1.16 and -2.52 respectively. Cs is the weight ratio of

solute s to total solids. Ṁ (average molecular weight) in Eq. (2.30) is expressed as:

Ṁ=√∑s=1

n

(C s

M s
) (2.31)

 2.6.5. Change of aw with temperature

To take into account the change of aw with temperature, a modified version of Clausius-

Clapeyron equation was used:

d ln (aw)
d 1/T

=
−Q s

R
(2.32)

where R is the universal gas constant (kPa·m3/kg·K) and Qs is known as the moisture binding

energy and several of them are tabulated by Iglesias and Chirife (1982). It should be noted that

the values of Qs greatly vary for different food items. Discretization of Eq. (2.32) gives,

ln
(aw2)
(aw1)

1
T 2

− 1
T 1

=
−Q s

R
(2.33)

Since values of Qs varies greatly an attempt was made to guess the desired energy:

Q s=maverage⋅Cpaverage⋅ΔT (2.34)

where maverage was computed based on average molecular weight and ΔT is the temperature

difference, the difference between food’s current temperature and its default temperature

(20°C).

22

 2.6.6. Method selection for aw prediction

Before attempting to use any of the above equations, the following checks are made:

1. %water < 1 or %water > 99.99 → aw=0.01 or aw=0.999

2. %CHO>98 → aw=0.70

3. 0<Solute<1% → aw=0.99

If none of the above matches, then the following are checked:

1. If the food belongs to the group, namely Sweet, Money-Born equation is used.

2. If %salt ≥1 or %water≥90 → Raoult’s law is used.

If the last two conditions are not satisfied, then the amount of solute is computed: if

%solute ≥70 → Norrish equation is used.

If neither of the above conditions are met then Ferro Fontan-Chirife-Boquet equation is used.

23

 3. APPLICATIONS

 3.1. Material Balance

Background

Material balance calculations are commonly used for formulating products from available raw

materials, evaluating final compositions, processing yields, etc. (Toledo 2007).

In this section 3 examples will be presented. In the first example, we are interested in finding

the final composition (output) of the food item from the given inputs, whereas in the 2nd and 3rd

ones, the interest is to find the amount of input to obtain the requested output.

First example is straightforward and fairly intuitive whereas second example requires some

counter-intuitive approach. For both examples there are two food items, namely A and B and

compositions are as follows:

1. Food A (15% protein, 20% fat, 63% water),

2. Food B (3% protein, 80% fat, 15% water)

Let’s form two food objects from the above-given compositions:

import scisuit.eng.fpe as fpe

A = fpe.Food(protein=15, water=63, lipid=20)
B = fpe.Food(protein=3, water=15, lipid=80)

Note that the percentages do not exactly add up to 100%.

Example 3.1.1

What would be the final composition if 90 kg of A and 10 kg of B are mixed?

Solution: Knowing that the final weight will be 100 kg, we can use the following

straightforward approach:

C = 90*A + 10*B
print(C)

water (%) = 59.39
protein (%) = 14.08
lipid (%) = 26.53

24

Example 3.1.2

What is the required amounts of A and B to make a 100 kg of final product which contains

26.5% of fat?

Solution:

Note that the question is the opposite of Example (3.1.1) such that the final composition is

given but the amounts of inputs are queried.

The code to solve this is very short but requires some care, first let’s look at the code:

C = 0.265*fpe.Food(lipid=1)
amounts = C.makefrom([A, B])

print(amounts)

[0.9005, 0.0995]

which means ~90 kg A and ~10 kg B should be used.

Things to note:

1. C contains other ingredients (Ex. 3.1.1), but it was defined as only containing lipid and

fat content was to be 26.5%, however, was defined as 100% fat.

2. Although the final weight of mixture is 100 kg, it was not explicitly used in the code.

Let’s take a look under the hood and see how makefrom member function works:

1. Solves the equation A⋅x=b where the first row of A is all 1 and first entry of b is 1.

2. The 2nd, 3rd and so forth rows of A are based on the ingredients the food object has. So

if it has only lipid, then 2nd row of A will be amount of lipid from each input food item

and the second entry of b will be amount of lipid times its weight. Therefore, the linear

system formed for this example is:

[1 1
0.2 0.8]⋅[A

B]=[1
1×0.265]

Notice that n ingredients in the target food requires n+1 input foods.

3. Each entry of the vector, namely x, is between 0.0 and 1.0. However, it should be rather

straightforward to scale it up to actual amounts.

25

Example 3.1.3

Determine the amounts of meat, fat, and water that must be used to make 100 kg of a sausage

formulation (adapted from Toledo 2007).

1. Meat: 14% fat, 67% water, 19% protein,

2. Fat: 89% fat, 8% water, 3% protein,

3. Sausage: 20% fat, 65% water, 15% protein.

Solution:

This is a slightly more complex example than Example 3.1.2 and solution by hand can be

error-prone (see Toledo 2007 page 81).

import scisuit.eng.fpe as fpe

#defining inputs
meat = fpe.Food(lipid=14, water=67, protein=19)
fat =fpe.Food(lipid=89, water=8, protein=3)
water = fpe.Food(water=100)

#target food
sausage = 85/100*fpe.Food(lipid=20, water=65) # 85/100 is to circumvent auto-adjustment

amounts = sausage.makefrom([meat, fat, water])
print(amounts)

[0.7732, 0.1031, 0.1237]

Therefore, approximately 77.3 kg meat, 10.3 kg fat and 12.4 kg water are needed to make 100

kg of sausage.

Notice that although sausage had 3 ingredients (fat, protein and water), only 2 of them, lipid

and water, were used. Had we used protein instead of water in the definition of sausage, then

there would have been a Runtime Error(“List contains food items that has no common ingredient

with the target”).

Furthermore, in section 2.1, it was mentioned that when the sum of ingredients do not add up

to 100%, it is automatically adjusted to 100%. In order to circumvent this auto-adjustment, in

the assignment phase of sausage, the constructed food object was multiplied by 85/100.

26

 3.2. Energy Balance

Background

Energy balance on a system is based on the first law of thermodynamics. Energy balance

calculations are used in almost all operations from evaporators, dryers to microwaves.

Example

Calculate the heat required to raise the temperature of a 4.535 kg roast containing 15% protein,

20% fat, and 65% water from 4.44 to 65.55°C.

Solution:

Before we proceed with the details, let’s construct the food object:

import scisuit.eng.fpe as fpe

roast = fpe.Food(protein=15, lipid=20, water=65)
m = 4.535 #kg
t1, t2 = 4.44, 65.55 #°C
dT = t2-t1

The solution is fairly simple and all needed is to apply the following equation:

Q=m⋅C p⋅ΔT (3.1)

However, before applying Eq. (3.1), let’s see how Cp changes with temperature.

Fig 3.1: Change of roast’s Cp with temperatures

import scisuit.plot as plt
T = range(10, 80, 5)
cp = [roast.cp(v) for v in T]

plt.scatter(x=T, y=cp)
plt.xlabel("Temperature(°C)")
plt.ylabel("Cp (kJ/kg°C)")
plt.show()

27

It is seen from Fig 3.1 that the Cp of roast increases with temperature, although in a very

narrow range. Therefore, either Eq. (3.1) can be used as is or can be modified to take into

account the change of Cp with temperature:

Q=m⋅
Cp(T 1)+Cp(T 2)

2
⋅(T 2−T 1) (3.2)

Application of Eq. (3.1):

Q= m*roast.cp()*dT
print(f"Heat required: {Q} kJ")

Heat required: 939.8 kJ

Application of Eq. (3.2):

Cp_avg = (roast.cp(t1) + roast.cp(t2))/2.0

Q= m*Cp_avg*dT
print(f"Heat required: {Q} kJ")

Heat required: 942.7 kJ

Since Cp was nearly linear and changed in a very narrow range (see Fig. 3.1), as expected there

was almost no difference in the required energy computed using Eqs. (3.1) or (3.2).

Using Siebel’s equation (Eq. 3.3), Toledo (2007) estimated Cp as 3.182 kJ/kg·K and the

required heat as ~882 kJ.

Caverage=1674.72 F+837.36 SNF+4186.8 M (3.3)

where unit of Caverage is J/kg·K and F, SNF and M are mass fractions of fat, solids non-fat and

moisture, respectively.

from scisuit.eng.fpe import Cp

cp = Cp(roast)

Q= m*cp.Siebel()*dT
print(f"Heat required: {Q} kJ")

Heat required: 881.8 kJ

28

 3.3. Freezing

Background

Cooling is a fundamental operation in food processing and preservation (Toledo 2007). Above

the freezing point, enthalpy (h) consists of sensible energy; however, below freezing point, h

consists of both sensible and latent energy (ASHRAE 2006).

 3.3.1. Unfrozen food

If the temperature is above freezing point then the enthalpy can be computed using the

following equation (Chen 1985):

H=H f +(T−T f)⋅(4.19−2.30 x s – 0.628 xs
3) (3.4)

where H is the enthalpy (kJ/kg), Hf is the enthalpy at initial freezing temperature (kJ/kg), T is

the temperature and Tf is the initial freezing temperature and xs is the mass fraction of food

solids.

Hf can be computed using Chang and Tao (1981) equation:

H f =9.79246+405.096⋅xw 0 (3.5)

where xw0 is the mass fraction of water above initial freezing point.

 3.3.2. Frozen food

The temperature is below freezing point and the enthalpy can be computed using the following

equation (Chen 1985; ASHRAE 2006).

H=(T−T r)⋅[1.55+1.26 xs –
(xw 0−xb)L0T f

T r⋅T] (3.6)

where Lo is the latent heat of fusion of water = 333.6 kJ/kg, Tr is the reference temperature

(typically -40°C) and xb is mass fraction of bound water and can be computed as follows

(Schwartzberg 1976; ASHRAE 2006).

29

xb=0.4 x p (3.7)

where xp is the mass fraction of protein.

 3.3.3. Estimation of initial freezing temperature

Chang and Tao (1981) developed the following equations to estimate the initial freezing

temperature (in K) of food items (ASHRAE 2006):

Meat group:

T f=271.18+1.47 x w0 (3.8)

Fruit/Vegetable Group:

T f=287.56−49.19 xw 0+37.07 xw 0
2

(3.9)

Juice Group:

T f=120.47+327.35 xw 0 – 176.49 xw 0
2

(3.10)

 3.3.4. Estimation of ice fraction

Predicts the mass fraction of water that has crystallized below the initial freezing point, which

is a function of temperature (ASHRAE 2006). Tchigeov (1979) developed the following

equation:

x ice=
1.105 xw0

1+ 0.7138
ln (T f – T+1)

(3.11)

Example 3.3.1

A 150 kg beef carcass (57.26% water, 17.32% protein, 24.05% fat) is to be frozen to a

temperature of –20°C. The initial temperature of the carcass is 10°C. How much heat must be

removed? (adapted from ASHRAE 2006).

30

Solution:

The initial freezing point of Tf is -1.7°C (ASHRAE 2006). Let’s first define the givens in

Python language.

import scisuit.eng.fpe as fpe

carcass = fpe.Food(water=57.26, protein=17.32, lipid=24.05)
m = 150 #kg
Tf = -1.7

In order to compute the amount of heat removal enthalpy at both frozen (-20°C<Tf) and

unfrozen (10°C>Tf) state must be known.

carcass.T = 10
h10 = carcass.enthalpy(Tf)

carcass.T = -20
h_20 = carcass.enthalpy(Tf)

Q = m*(h10 - h_20) #kJ
print(Q)

35004.1

Note that behind the scenes enthalpy of unfrozen food (h10) using Eqs. (3.4 & 3.5) and

enthalpy of frozen food (h_20) was computed using Eqs. (3.6 & 3.7).

Note that the initial freezing point of Tf was found from ASHRAE (2006) as -1.7°C. When this

information is not available Eqs. (3.8), (3.9) and (3.10) can be used. Let’s predict the initial

freezing point of the variable, namely carcass:

carcass = fpe.Food(water=57.26, protein=17.32, lipid=24.05)

Tf = carcass.freezing_T()

NotImplementedError: Only implemented for Juice, Fruit/Veggies and Meat

The error is clear, i.e. there is no general equation to compute the freezing point of foods;

however, there are specialized equations to compute the freezing point of certain food groups.

Therefore, the definition of carcass has to be modified:

carcass = fpe.Meat (water=57.26, protein=17.32, lipid=24.05)

Tf = carcass.freezing_T()
print(Tf) #°C

-1.12

31

Example 3.3.2

A 150 kg beef carcass is to be frozen to -20°C. What are the masses of the frozen and unfrozen

water at -20°C? (ASHRAE 2006)

Solution:

First the fraction of water that is frozen needs to be found, in other words the ice fraction.

carcass = fpe.Meat(water=57.26, protein=17.32, lipid=24.05)
carcass.T = -20
print(f"Frozen fraction: {carcass.x_ice(-1.12)}")

Frozen fraction: 0.5178

Total amount of water: 150×0.5726=85.89kg water.

The amount of frozen water: 150×0.52=78 kg

Unfrozen water: 85.89−78=7.89 kg.

32

 3.4. Water Activity / Drying

Background

Water activity of foods is an important physical property to predict food stability and shelf life.

For example, in mathematical modeling during storage of a food material, the storage

conditions and packaging material can be simulated for extended shelf-life (Sahin & Sumnu

2006). There are several equations to predict the water activity of foods and an extensive

discussion is presented by Barbosa-Cánovas et al. (2007).

Example 3.4.1

Predict the aw of extruded pasta at moisture content of 9% (w.b.) at 35 and 50°C (adapted from

Heldman and Lund 2007).

Solution:

The actual values of aw at 35 and 50°C are 0.35 and 0.51, respectively.

f = fpe.Food(water=9, cho=91)

for t in [35, 50]:
 f.T = t
 print(f"At {t}°C aw={f.aw()}")

At 35°C aw=0.32
At 50°C aw=0.41

It is seen that the computation of aw=0.32 at 35°C is reasonably close to 0.35. whereas at 50°C,

there is a deviation of ~0.1. For most purposes the computational results of aw might be

accurate enough to make some informed decisions.

Example 3.4.2

NaCl, sucrose or the NaCl-sucrose solutions are commonly used for osmotic dehydration of

potatoes. Estimate aw of 20% sucrose solution, 20% NaCl solution and a solution containing

10% NaCl and 10% sucrose (Sahin & Sumnu 2006).

Solution:

nacl = fpe.Food(water = 80, salt=20)
sucrose = fpe.Food(water=80, cho=20)

33

solution = fpe.Food(water=80, cho=10, salt=10)

print(f"nacl = {nacl.aw()}")
print(f"sucrose = {sucrose.aw()}")
print(f"solution = {solution.aw()}")

nacl = 0.867
sucrose = 0.976
solution = 0.918

The values reported by Sahin & Sumnu (2006) are 0.867, 0.987 and 0.923 for nacl, sucrose

and solution, respectively. The minor difference between the aw’s predicted and reported by

Sahin & Sumnu (2006) is from the fact that CHO is assumed to be made up of fructose which

has a molecular weight of 180.16 g/mol whereas molecular weight of sucrose is 342 g/mol.

Therefore, the difference in molecular weights will affect result computed by Eq. (2.24). Please

see section 4 for a discussion on possible remedies to overcome such differences.

Example 3.4.3

Outside air with a relative humidity of 60 % and dew point of 1 °C will be used for drying of

200 kg of sliced apples with an initial moisture content of 80%. The air is first heated to 50° C

and then enters to the adiabatic dryer. The capacity of the blower is 1.5 m3/s. The exit air has a

dew point 20 °C. Plot moisture content – aw graph and compute the required drying time to

store it safely.

Solution:

Fig. 3.2: A sketch of the drying system

State 1: Outside air: Pressure, RH and Tdew-point
known are known for the entering air.

State 2: Heated air: Simple heating does not
change absolute humidity, therefore W2 = W1.
Pressure and Tdry-bulb are known.

State 3: Exiting the dryer: In an adiabatic dryer,
the enthalpy remains constant, therefore H3 = H2.
Pressure and Tdew-point are known.

The givens for humid air are:

P = 101.325 #kPa
Tdp1, Tdp3 = 1, 20 #dew-point temperatures
Tdb2 = 50 #dry-bulb temperature (heating)
V_flow = 1.5 #m3/s volumetric flow rate

34

Let’s define the moist-air’s 3 states and find the necessary psychrometric properties:

import scisuit.eng as eng

state1= eng.psychrometry(RH=60, Tdp=Tdp1, P=P)
w1, v1 = state1.W, state1.V #absolute humidity and specific volume

ma = V_flow/v1 #kg da/s (mass flow rate)
w2 = w1 #absolute humidity does not change during simple heating
state2 = eng.psychrometry(W=w2, Tdb=Tdb2, P=P)
h2 = state2.H #enthalpy

h3 = h2 #enthalpy does not change in adiabatic conditions
state3 = eng.psychrometry(H=h3, P=P, Tdp=Tdp3)
w3=state3.W #absolute humidity of exiting air

In the code below, we calculate the amount of water removed from the apple at given intervals

and then find the moisture content and water activity at each point in the interval.

apple = eng.Food(water = 80, cho = 20) #define moist apple
water = eng.Food(water=100) #define water as food (as it is removed from apple)

mc, Aw, time = [apple.water], [apple.aw()], [0]
Duration = range(30, 140, 10) #intervals in minutes to be inspected
for t in Duration:
 mwater = ma*(w3-w1)*t*60 #amount of water removed
 driedapple = 200*apple - mwater*water

 mc.append(driedapple.water)
 Aw.append(driedapple.aw())
 time.append(t)

All that is left is to plot a scatter chart of MC vs aw and time vs aw.

plt.scatter(y=mc, x=Aw)
plt.xlabel("water activity")
plt.ylabel("Moisture content")

plt.figure()

plt.scatter(x=time, y=Aw)
plt.xlabel("time")
plt.ylabel("water activity")

plt.show()

The above code will produce the following plots:

35

Fig. 3.3: aw vs MC (w.b.) for apple

As expected as the moisture content
decreased the water activity decreased.

Note that until 40% moisture content, aw
decreased very slowly but after then
rather quickly.

The reason for the aw to decrease slowly and then rather quickly could be the fact that different

equations are used for different compositions. During drying the moisture content changes

which corresponds to composition changes. The following table summarizes the equations

used.

Table 3.1: Predictive equations used during drying of apple slices

% MC Range Equation

80.0 - 71.48 Raoult

68.83 - 41.67 Ferro-Fontan, Chirife &Boquet

29.37 - 10.49 Norrish

36

Fig. 3.4: Change of water activity with time

It is seen that after 120 minutes the apple

slices’ water activity decreased below 0.7

and therefore microbiological and most

chemical reactions would be at its

minimum (as seen from Fig 3.5) and

therefore would be safe to store.

Fig. 3.5: Relative chemical& microbiological reaction rate
as a function of water activity

Adapted from Barbosa-Cánovas et
al. (2007).

Original from: Labuza TP,
Tannenbaum SR & Karel M (1970).
Water content and stability of low
moisture and intermediate moisture
foods. Journal of Food Technology, 24,
543–550

37

 3.5. Heat Transfer

Background

In heat transfer analysis, it so happens that some bodies’ interior temperature remains uniform

throughout the heat transfer process and therefore the temperature of such bodies can be taken

to be a function of time only, T(t) (Cengel 2002). The equation T(t) is:

ln
T (t)−T∞

T i−T∞
=

−h A s

ρ V C p

dt (3.12)

where h is the convective heat transfer coefficient, T(t) is the temperature after time t, Ti is the

initial temperature of the body and T∞ is the temperature of the fluid. As is the surface area, V is

the volume and ρ and Cp are density and specific heat capacity of the body respectively.

To use Eq. (3.12), Bi number, which is computed as shown below, should be less than 0.1.

Bi=
h⋅(V / A s)

k
(3.13)

where k is the thermal conductivity of the body.

The computation of convective heat transfer depends on several factors; however, for the flow

of gas or liquid over cylinder with circular cross-section the following equations can be used

(Cengel 2002).

Nu=C Rem Pr1/3 (3.14)

where the values for constants C and m depends on the Reynolds number. A Python function to

compute Nusselt number in the Reynolds number range of 0.4-4000 is given below:

def Nu(Re, Pr):
 C, m = 0,0
 if 0.4 <= Re < 4:
 C , m= 0.989, 0.330
 elif 4 <= Re < 40:
 C, m = 0.911, 0.385
 elif 40 <= Re < 4000:
 C, m = 0.683, 0.466

 return C*Re**m*Pr**(1/3)

38

h can be computed using the following equation:

h= Nu⋅k
Lc

(3.15)

where k is the thermal conductivity of the fluid and Lc is the characteristic length.

Example 3.5.1

Thompson seedless grape with 80% moisture content is put in a convective dehydrator

operated at 58°C and with air flow at a velocity of 0.6 m/s. The initial temperature of grape is

26°C and its length and diameter are 29.7 and 1.9 cm, respectively. Obtain the center and

surface temperatures of grape for the first 22 minutes (Bingol 2008).

Solution:

Assumption: Grape is a cylinder with circular cross-section.

import scisuit.eng.fpe as fpe
import scisuit.eng as eng
import scisuit.plot as plt
from math import pi, exp

grape = fpe.Food(water=80, cho=20)

Tair, T0_grape = 58, 26 #C
V = 0.6 #m/s
D, L = 1.9 /100, 29.7/100 #m

#critical length
Lc = D / 2

#film temperature
Tf = (Tair + T0_grape)/2

air = eng.Air(T=Tf+273.15)

Re = (air.rho()*V*D) / air.mu()

Nu_ = Nu(Re, air.Pr())
h = Nu_*air.k() / Lc

""" Lumped Heat Capacity Analysis """
Volume = pi*(D**2/4)*L
SurfaceArea = 2*pi*D**2/4 + pi*D*L

Lc_lumped = Volume/SurfaceArea #critical length in lumped analysis

39

Bi = h*Lc_lumped/grape.k()
b = h /(grape.rho()* grape.cp()*1000*Lc_lumped)

22 minutes, sample every minute
t_sim = range(0, 23)
T_sim = [exp(-b*t*60)*(T0_grape - Tair) + Tair for t in t_sim]

Experimental values
t_exp = [0, 1.007, 2.006, 3.01, 4.001, 5.009, 6.005, 7.007, 8.005, 9.002, 10.004, 11.004,
 12.005, 13.008, 14.005, 15.002, 16.001, 17.008, 18.005, 19.005, 20.007, 21.005,
 22.002, 22.104, 22.206, 22.309, 22.401, 22.506]

T_exp = [26.268, 28.933, 31.393, 33.828, 36.028, 38.173, 40.093, 41.778, 43.443, 44.953,
 46.208, 47.438, 48.498, 49.403, 50.308, 51.113, 51.673, 52.248, 52.873, 53.343, 53.748,
 54.218, 54.593, 54.573, 54.588, 54.653, 54.713, 54.733]

plt.scatter(x=t_sim, y=T_sim, label="simulation")
plt.scatter(x=t_exp, y=T_exp, label="experimental")
plt.legend()
plt.show()

If h and Bi were printed out, the values are 36.3 W/m2°C and 0.38. Although Bi>0.1, the

lumped heat transfer analysis can still be applied with minor errors. The accuracy of simulation

is shown in the following figure:

Fig 3.6: Experimental vs simulated temperature profile of

grapes

It is seen that the accuracy of the
prediction of experimental data by
simulation is very well.

The average error was 1.49°C and
the maximum error was 2.14°C at
t=7 min.

40

It should also be noted that the simulated temperatures were always greater than the

experimental ones. This could be due to the fact that experimental values presented here are the

average of center and surface temperatures of grape. Since Bi number is 0.38, there was still

minor thermal resistance in the body that slowed down the heat transfer to the center and

therefore caused minor thermal gradient, T=T(r, t), instead of a uniform temperature

distribution, T=T(t). As a result the center temperature remained slightly lower than surface

temperature. If, instead, simulated values were compared with the surface temperatures of

grapes, the average and maximum errors were 1.15 and 1.99°C, respectively, both of which

were lower than the comparison with the average temperatures.

41

 4. DISCUSSION

As stated in the introduction section, food is a complex material and is subjected to various

processes. Therefore, it would be naive to assume that the current work covered all aspects of

food processing. However, this study clearly illustrated that digitalization of food properties

has several benefits such as shortening the amount of work and decreasing the complexity to

model a process and thereby paving the way for more complex studies.

The construction of a food object (section 2.1), requires parameters such as lipid, protein,

CHO, salt only specified by percentages/fractions. However, it is known that there are many

different types of lipids, proteins, CHO’s and salts. In order to take into account these finer

details, each of these macro-molecules can be defined as a Python class as shown in the

following conceptual example:

detailed definition of CHO
carbs = fpe.CHO(glucose = 40, fructose = 60)

#food made of water and CHO (glucose + fructose)
food = fpe.Food(CHO = 40* carbs, water = 60)

Having the above-level of of details will increase accuracy of predictions, however, it should

also be noted that such an attempt will also drastically increase the complexity of the overall

work.

It was also seen that when constructing a food object, if the sum of the percentages was not

equal to 100%, then it would have been automatically adjusted to be 100% (see section 2.1).

Although this approach ensures that a food object is compositionally well defined, if not paid

attention it might lead to confusions and thereby errors especially when working with mass

balances where a well-defined food object is not necessarily required. Therefore, in the

following versions of scisuit auto-adjustment is planned to be optional.

It is possible to increase the accuracy of water activity predictions by including other available

equations (such as Pitzer, Bromley, Ross, etc.). Furthermore, as shown above, including finer

details of composition should further increase the accuracy of predictions. Thus, combined

with thermo-physical properties such estimations would serve the basis for more complex

mathematical models and would be valuable when making informed decisions.

42

Given the fact that programming languages such as Python, C++ offer many options for

overloading operators (binary, arithmetic, etc.), not only the work presented here can be taken

further but also the idea of digitalization of food properties can be extended to different types

of materials.

43

 5. ACKNOWLEDGMENT

I sincerely thank Prof Murat Ö. Balaban for his feedback in writing this document. His

expertise, enthusiasm and attention to the detail not only have been an inspiration but also have

been an invaluable asset in improving and refining this work.

44

 6. REFERENCES

ASHRAE (2006). ASHRAE Handbook: Refrigeration, American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Amer Society of Heating, Atlanta, GA.

Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ & Labuza TP (2007). Water activity in
foods: fundamentals and applications, Blackwell Publishing and the Institute of Food
Technologists.

Bingol G (2008). The Effects of Different Pretreatments on Drying Rate and Color Kinetics of
Convective and Microwave-assisted Convective Drying of Thompson Seedless Grapes.
Istanbul Technical University, PhD Thesis.

Calay RK, Newborough M, Probert D, Calay PS (1995). Predictive equations for the
dielectric properties of foods. International Journal of Food Science and Technology, 29, 699-
713.

Cengel YA (2002) Heat Transfer: A Practical Approach. 2nd Edition, McGraw-Hill, New York.

Chang HD & Tao LC (1981). Correlations of enthalpies of food systems. Journal of Food
Science, 46:1493.

Chen CS (1985). Thermodynamic analysis of the freezing and thawing of foods: Enthalpy and
apparent specific heat. Journal of Food Science, 50:1158.

Choi Y & Okos MR (1986). Effects of temperature and composition on the thermal properties
of foods. Food Engineering and Process Applications, Vol. 1: Transport Phenomena (pp. 93–
101). New York: Elsevier.

Demartini M, Pinna C, Tonelli F, Terzi S, Sansone C, Testa C (2018). Food industry
digitalization: from challenges and trends to opportunities and solutions. IFAC Papers Online,
51-11, 1371-1378.

Fontan CF, Chirife J & Boquet R (1981). Water activity in multicomponent non-electrolyte
solutions. Journal of Food Technology, 16, 553–559.

Gulati T & Datta AK (2013). Enabling computer-aided food process engineering: Property
estimation equations for transport phenomena-based models. Journal of Food Engineering,
116, 483–504.

Heldman DR & Lund DB (2007). Handbook of Food Engineering, 2nd Edition, CRC Press,
Boca Raton FL.

Iglesias HA & Chirife J (1982). Handbook of Food Isotherms: Water Sorption Parameters for
Food and Food Components. Academic Press, New York.

Money RW & Born R (1951). Equilibrium humidity of sugar solutions. Journal of Science
Food Agric. 2-180.

Norrish RS (1966). An equation for the activity coefficients and equilibrium relative
humidities of water in confectionary syrups. Journal of Food Technology, 1-25.

Riedel L (1962). Thermal Conductivities of Aqueous Solutions of Strong Electrolyte, Chem.-
1ng.-Technik., 23 (3), 59-64.

45

Sahin S & Sumnu SG (2006). Physical Properties of Foods. Springer New York, NY.

Schwartzberg HG (1976). Effective heat capacities for the freezing and thawing of food.
Journal of Food Science, 41(1), 152-156.

Scott WJ (1953). Water relations of Staphylococcus aureus at 30°C. Australian Journal of
Biological Sciences, 6, 549–564.

Tchigeov G (1979). Thermophysical processes in food refrigeration technology. Food Industry,
Moscow.

Toledo RT (2007). Fundamentals of Food Process Engineering, 3rd Edition, Springer New
York, NY.

46

	1. INTRODUCTION
	2. FUNDAMENTALS
	2.1. Construction of a Food Object
	2.2. Comparison of Food Objects
	2.3. Mathematical Operations
	2.3.1. Addition
	2.3.2. Subtraction
	2.3.3. Multiplication
	2.3.4. Pitfalls

	2.4. Thermo-physical Properties
	2.4.1. Specific heat capacity (Cp)
	2.4.2. Thermal conductivity (k)
	2.4.3. Density (ρ)

	2.5. Dielectric Properties
	2.5.1. Meat and meat products
	2.5.2. Fruits and vegetables
	2.5.3. Cereal grains

	2.6. Water Activity
	2.6.1. Raoult’s law
	2.6.2. Money-Born equation
	2.6.3. Norrish equation
	2.6.4. Ferro Fontan-Chirife-Boquet equation
	2.6.5. Change of aw with temperature
	2.6.6. Method selection for aw prediction

	3. APPLICATIONS
	3.1. Material Balance
	3.2. Energy Balance
	3.3. Freezing
	3.3.1. Unfrozen food
	3.3.2. Frozen food
	3.3.3. Estimation of initial freezing temperature
	3.3.4. Estimation of ice fraction

	3.4. Water Activity / Drying
	3.5. Heat Transfer

	4. DISCUSSION
	5. ACKNOWLEDGMENT
	6. REFERENCES

