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 1. INTRODUCTION

In broad terms digitalization refers to the process of utilizing digital technologies to change the  

core  of  business  conduct.  If  correctly  implemented,  digitalization  can  lead  to  digital 

transformation and thereby improve productivity, reduce costs and pave the way for the future 

of manufacturing1. A literature survey by Demartini  et al. (2018) found that the topic of the 

digitalization in the food industry has been studied since 2016 with the common keywords 

associated “Factory of the future” and “Food”. The authors stated that the food companies are 

slower  to  adopt  digital  technologies.  Nonetheless  like  all  processing  industries,  the  food 

industry  is  also  seeking  ways  to  enhance  efficiency,  reduce  costs  and  become  more 

environmentally friendly. Adoption of digitalization can play a significant role in achieving 

these goals. 

Digitalization of food is  challenging and Britannica2 defines food as “substance consisting 

essentially of protein, carbohydrate, fat, and other nutrients …”. Not only food has a complex 

composition, but also comes in various shapes, colors, odors, etc. Therefore, to tackle the high 

level of complexity, some level of abstraction was required. Therefore, in this work food was 

considered to consist of macronutrients (carbohydrate, lipid and protein) and also water, ash 

and  salt.  This  is  consistent  with  USDA NAL Database3 which  has  compositional  data  of 

approximately 9000 food items. This level of abstraction facilitates various tasks. However, it 

does not exempt us from the complexity of carbohydrates, lipids and proteins that are divided 

into sub-groups with different physical and thermal properties.

In  programming languages,  two major  trends  can be  seen:  i)  procedural  programming,  ii) 

object-oriented  programming.  Several  object-oriented  programming  languages  support 

operator  overloading4 (e.g.  C++,  Python  etc.).  These  languages  allow  definitions  such  as 

Food=Food+Food , therefore enabling construction of new food items from existing ones, 

such as after a mixing operation.

Foods  are  also  subject  to  various  operations  that  may  require  the  knowledge  of  different 

physical properties. For example, to calculate the heat required to raise the food's temperature 

requires  specific  heat  capacity(Cp)  whereas  heat  transfer  modeling  requires  thermal 

conductivity and Cp. For microwave processing, dielectric properties should also be known. 

1 https://social-innovation.hitachi/en-us/think-ahead/manufacturing/industrial-digitalization-for-smart-manufacturing/ 
2 Britannnica, https://www.britannica.com/topic/food
3 FoodData Central Data, https://fdc.nal.usda.gov/download-datasets.html
4 Wikipedia, https://en.wikipedia.org/wiki/Operator_overloading
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In this document,  the complexities of calculation/automation of various food properties,  as 

well as their use in food process calculations will be reduced by using the  scisuit’s5 open-

source food class that can be found at GitHub6. Reduction in computational complexities not 

only will shorten the amount of work but will also enable to model a wider range of processes.

The target audience of this work is food process engineers. This document assumes that the 

reader  already  has  some  knowledge  in  food/chemical  engineering  concepts  and  basic  to 

intermediate level of understanding of Python. The code used in this document was generated 

in a Windows 11 operating system using Visual Studio Code (1.83.1) environment, running 

Python  3.10.6.  Detailed  examples  of  applications  in  food  process  engineering  will  be 

presented.

5 At least v1.1.2 (https://pypi.org/project/scisuit/)
6 GitHub, gbingol (Gokhan Bingol) · GitHub
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 2. FUNDAMENTALS

 2.1. Construction of a Food Object

In order to perform any digital operations on food, it must first be defined and constructed. 

Food is  considered  as  an  object  comprised  of  a  combination  of  carbohydrate  (CHO),  fat,  

protein, water, ash and salt. It should be noted that salt has been considered as a separate entity  

than ash as it has considerable effect on electric and dielectric properties.

To define a food object, first scisuit’s food process engineering (fpe) library, which is part of 

engineering library (eng), should be imported, import scisuit.eng.fpe. For example, milk may 

have approximately 88.13% water, 3.15% protein, 4.80% CHO, 3.25% lipid and 0.67% ash. 

Therefore, to define milk as a food object:

import scisuit.eng.fpe as fpe

milk = fpe.Food(water=88.13, protein=3.15, cho=4.8, lipid=3.25, ash=0.67)
print(milk)

Type = Food
Weight (unit weight) = 1.0
Temperature (C) = 20.0
water (%) = 88.13
cho (%) = 4.8
protein (%) = 3.15
lipid (%) = 3.25
ash (%) = 0.67
aw = 0.98

Note that, although it  is generally easier to work with percentages it  is possible to specify 

fractions as well, e.g. water=0.8813. It is seen from the output that the milk has a weight of 1 

unit  where  the  unit  of  the  weight  can  be  anything  from  gram,  kg  to  lbs.  Although  the 

temperature was not explicitly set, a default temperature was assigned as 20°C. Here it should 

be noted that behind the scenes it is possible to express weight as a fraction and work with the 

fraction;  however,  this  is  not  possible  with  the  temperature  itself.  Therefore,  Celsius  was 

chosen for the unit of temperature. In the output only the percentages of available ingredients 

are listed. If the result of the computation of water activity (aw) is different from None then aw 

is included in the output as well. 
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When defining a Food object, if the sum of the percentages was not equal to 100%, then it 

would have been adjusted to be 100%.

f = fpe.Food (water=40, protein=20)
print(f)

Type = Food
Weight (unit weight)=1.0
Temperature (C)=20.0
water (%)= 66.67
protein (%)= 33.33
aw=0.908

In  the  above  example,  adjustment  is  simply  made  by  dividing  with  the  sum,  such  as 

water=40/(40+20), protein=20/60.

In  the  example  on  page  5,  although  the  variable  name  was  milk,  there  is  no  accurate 

mechanism to have a prior knowledge that  it  can be a dairy product let  alone milk itself.  

However, in the literature, there are specific computations, such as freezing temperature, water 

activity or dielectric properties, available for different food groups. To take advantage of these 

specific computations and therefore increase accuracy, the variable, namely milk, can also be 

constructed in the following way:

milk = fpe.Dairy(water=88.13, protein=3.15, cho=4.8, lipid=3.25, ash=0.67)
print(milk)

Type = Dairy
Weight (unit weight) = 1.0
Temperature (C) = 20.0
water (%) = 88.13
cho (%) = 4.8
protein (%) = 3.15
lipid (%) = 3.25
ash (%) = 0.67
aw = 0.98

Now that the variable milk is defined to be a dairy product, any equations specialized for dairy 

products  will  be  used  for  milk.  Although  USDA’s  classification7 for  foods  is  rather 

comprehensive and detailed, for the sake of simplicity 10 sub-groups for foods were assumed: 

7FoodData Central, https://fdc.nal.usda.gov/fdc-app.html#/ 
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1. Beverage
2. Cereal
3. Dairy
4. Fruits

5. Juice
6. Legume
7. Meat
8. Nut

9. Sweet
10. Vegetable

Although, in the above examples, milk was defined using 5 ingredients, it is not necessarily the 

case. For example, grape can be defined as a food item as well:

grape= fpe.Fruit (water =80, cho=20)
print(grape)

Type = Fruit
Weight (unit weight)=1.0
Temperature (C)=20.0
water (%)= 80.0
cho (%)= 20.0
aw=0.976
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 2.2. Comparison of Food Objects

Let f1, f2 be two different food objects. f 1=f 2 if and only if f1 and f2 have the same ingredients 

in exact quantities and belong to the same base- or sub-group type. The following example 

should clarify the concept.

#Example 1 : different ingredients (protein vs cho)
f1= fpe.Food (water =80, protein=20)
f2= fpe.Food (water =80, cho=20)
print(f"Different ingredients: {f1 == f2}") #    == is the comparison operator

#Example 2: different % of same ingredients (cho’s different)
f1= fpe.Food (water =80, cho=20)
f2= fpe.Food (water =60, cho=40)
print(f"Same ingredients different %: {f1 == f2}")

#Example 3 : same % and same ingredients
f1= fpe.Food (water =40, cho=10)
f2= fpe.Food (water =80, cho=20)
print(f"Same ingredients and %: {f1 == f2}")

#Example 4: same % and ingredients but different sub-groups (Dairy vs Fruit)
f1= fpe.Dairy (water =80, cho=20)
f2= fpe.Fruit (water =80, cho=20)
print(f"Different sub-groups: {f1 == f2}")

#Example 5: same % and ingredients but different groups (Food vs Fruit)
f1= fpe.Food (water =80, cho=20) #base
f2= fpe.Fruit (water =80, cho=20) #sub-group
print(f"Different groups: {f1 == f2}")

Different ingredients: False
Same ingredients different %: False
Same ingredients and %: True
Different sub-groups: False
Different groups: False

Examples  1-3  are  fairly  straightforward  to  understand;  however,  examples  4  &  5  require 

further clarification which is presented in the following figure:
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Fig. 2.1: Simple food hierarchy

In Fig. (2.1) for simplicity only 5 nodes are presented and on the top node, the Food class is 

found. Below the  Food class 4 specialized classes, which are sub-classes of  Food class, are 

shown. At this point it is helpful to understand that in object oriented programming languages a 

sub-class is a super class but a super class is not a sub-class. Therefore, for example, a Dairy is 

a Food but a Food is not (necessarily) a Dairy. Thus when equality operator is called, initially, 

the node type (class type) is checked and if the class types are different than  f1 and  f2 are 

considered as different. If the class types are the same, then the composition is inspected and if  

the compositions are same then f1 and f2 are considered as equal. 

Although at this stage, the above assumptions are satisfactory for many applications it is still  

not  100% accurate.  Consider  apples  and oranges,  which belong to  class  Fruit.  If  the  low 

protein contents (<1%) are omitted both apples and oranges have very similar composition in  

terms of CHO and water and thus would be considered as equal. However, needless to say, we 

should not mix apples and oranges since as shown below they belong to different sub-classes:

Fig. 2.2: Simple fruit hierarchy

It is seen that without any further information (color, texture, etc.) composition alone cannot be 

the sole decision maker and the class of the food item must taken into account as well.
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 2.3. Mathematical Operations

The food object  supports  some essential  arithmetic  operations:  Let  f1,  f2,  f3 and f4 denote 

different food items and a and b an arbitrary numbers.

 2.3.1. Addition

In terms of unit operations, addition can be considered as mixing of different food items.

a⋅f 1+b⋅f 2=f 3 (2.1)

Addition of two food items could yield a food item that is different than the operands ( f1, f2). If 

f1 and f2 belong to the same sub-group then f3 will belong to the same sub-group. Otherwise it 

will belong to the base of f1 and f2.

f1= fpe.Food (water =80, cho=20)
f2= fpe.Food (water =60, cho=40)

f3 = f1 + f2
f4 = 2*f1 + 3*f2

print(f3)
print(f4)

Type = Food
Weight (unit weight) = 2.0
Temperature (C) = 20.0
water (%) = 70.0
cho (%) = 30.0
aw = 0.959

Type = Food
Weight (unit weight) = 5.0
Temperature (C) = 20.0
water (%) = 68.0
cho (%) = 32.0
aw = 0.955

Here, it should be noticed that behind the scenes mass balance was performed automatically. It 

has already been mentioned that  if  the temperature was not  explicitly set,  the temperature 

would be set to 20°C by default. 

If f1 and f2 were at different temperatures, then energy balance would be performed as well, as 

demonstrated in the following script:
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#Continuing from the previous example
f1.T = 30
f2.T = 50

f5 = 2*f1+f2
print(f5)

Type = Food
Weight (unit weight) = 3.0
Temperature (C) = 36.04
water (%) = 73.33
cho (%) = 26.67

Assuming the reference temperature as 0°C, energy balance is computed in the following way:

Mass balance:

min=m1+m2=mout (2.2)

Energy balance:

E in=m1⋅cp1⋅T 1+m2⋅cp2⋅T 2=Eout (2.3)

The energy exiting the system can be expressed:

Eout=mout⋅cpaverage⋅T mix (2.4)

where average Cp is,

Cpaverage=
m1⋅Cp1+m2⋅Cp2

m1+m2
(2.5)

Note that in Eq. (2.5), specific heat capacity was assumed to be linear in terms of temperature. 

This assumption is reasonable since the leading coefficient of the polynomials in Eq. (2.8) are 

in the order of 10-6.

Finally, let’s observe the effect of adding i) Same sub-group,  ii) a sub-group and a base,  iii) 

different sub-groups:

#both are Dairy (same sub-group)
f1= fpe.Dairy (water =80, cho=20)
f2= fpe.Dairy (water =60, cho=40)

print(f1 + f2)
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#sub-group + base (Meat + Food)
f3= fpe.Meat (water =80, cho=20)
f4= fpe.Food (water =60, cho=40)

print(f3 + f4)

#sub-group + sub-group (Fruit + Vegetable)
f5= fpe.Fruit (water =80, cho=20)
f6= fpe.Vegetable (water =60, cho=40)

print(f5 + f6)

Type = Dairy
water (%) = 70.0
cho (%) = 30.0
Type = Food
water (%) = 70.0
cho (%) = 30.0

Type = Food
water (%) = 70.0
cho (%) = 30.0

The idea here is simple when visualized in terms of Fig. (2.1). Addition of classes belonging to 

same node yields that particular node type, whereas, addition of different nodes yields the base 

class (Food). Therefore, addition of f1 and f2 yielded Dairy, whereas f3+f4 and f5+f6 yielded the 

base class type, Food.

 2.3.2. Subtraction

Subtraction can be likened to extraction, drying, etc. and is defined as follows:

f 1−f 2=f 3 (2.6)

It should be noted that, similar to addition, subtraction operation could give a food item that is 

different than the operands (f1, f2). Unlike addition where temperatures and the compositions of 

f1 and f2 could be different, the following conditions must be met for Eq. (2.6) to succeed: 

1. f1 and f2 must belong to the same group/sub-group.

2. f1 must have all  of the ingredients  f2 has and moreover the amount in  f2 cannot be 
greater than f1,

3. The temperatures of f1 and f2 must be equal.
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Let’s turn milk into milk powder by removing water,  in other words we are performing a 

drying operation: 

milk = fpe.Dairy(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)
water = fpe.Food(water=100)

#remove water from milk
powder = milk - 0.87*water
print(powder)

AssertionError: Foods must have same type

Now that we have violated rule #1, an error has been raised. But logically we know that we can 

remove water from milk and get milk powder, which is a dairy product. Therefore, at this point  

we need to change our approach:

#generalize milk and water as Food 
milk = fpe.Food(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)
water = fpe.Food(water=100)

#remove water from milk (Food - Food = Food)
powder = milk - 0.87*water
print(powder)

#convert “general” powder into a dairy powder
dairy_powder = fpe.Dairy(**powder.ingredients()) #ingredients returns a Python dictionary
print(dairy_powder)

Type = Food
Weight (unit weight) = 0.13
water (%) = 8.69
cho (%) = 36.92
protein (%) = 24.23
lipid (%) = 25.0
ash (%) = 5.15

Type = Dairy
Weight (unit weight) = 1.0
water (%) = 8.69
cho (%) = 36.92
protein (%) = 24.23
lipid (%) = 25.0
ash (%) = 5.15
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 2.3.3. Multiplication

a⋅f 1=b⋅f 1=f 1 (2.7)

There is no logical definition as  food=food×food, therefore unlike addition or subtraction, 

which yielded new food materials, multiplication does not yield a new one. It only changes the  

unit weight.

f1 = fpe.Food (water =60, cho=40)
f2 = 2*f1

print(f2)

Type = Food
Weight (unit weight) = 2.0
Temperature (C) = 20.0
water (%) = 60.0
cho (%) = 40.0
aw = 0.937

Overloading  (redefinition)  of  multiplication  operator  is  necessary  to  be  able  to  perform 

addition or subtraction operations. Consider the following code snippet: f4 = 0.2*f1 + 0.8*f2

First of all, here we are implicitly saying that f4 is comprised of 20% f1 and 80% f2. To perform 

the addition, behind the scenes temporary food materials from 0.2*f1 and 0.8*f2 are created, 

say  temp1 and  temp2, respectively. Now  f4 can be computed as  f 4=temp1+temp2. Therefore, 

when addition is performed the input weights can be taken into account to correctly compute 

the composition and temperature of f4.

 2.3.4. Pitfalls

It has been mentioned in section 2.3.1 and  that addition and subtraction operations could give 

a new food item. Conceptually this is correct, however, mathematically using the new food 

object as is will most likely result in error. 

Let’s demonstrate it with a simple example:

f1 = fpe.Food (water =80, cho=20) 
f2 = fpe.Food (water =60, cho=40)

#create a food mix (weight=1+1=2)
f_mix = f1 + f2
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milk = fpe.Food(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)
water = fpe.Food(water=100)

#create a food powder (weight=1-0.87=0.13)
powder = milk - 0.87*water 

#create another food item from the mix and the powder
newmix = 2*powder + 3*f_mix

print(newmix)

Type = Food
Weight (unit weight) = 6.26 (=2*0.13 + 3*2) #ERROR
Temperature (C) = 20.0
water (%) = 67.45
   ...

There is error in weight and percentages of ingredients of newmix since f_mix and powder were 

just result of mathematical operations. Before we could use f_mix and powder as independent 

food items, they must to be normalized. This is simply done by calling the normalize member 

function.

f_mix.normalize()
powder.normalize()

#mixing f_mix and powder
newmix = 2*powder + 3*f_mix
print(newmix)

Type = Food
Weight (unit weight) = 5.0 #(=2*1.0 + 3*1.0), 1.0 is due to normalization
Temperature (C) = 20.0
water (%) = 45.48
cho (%) = 32.77
protein (%) = 9.69
lipid (%) = 10.0
ash (%) = 2.06
aw = 0.863

The normalize member function simply resets the weight to 1.0. After normalizing  f_mix and 

powder,  the  weight  of  newmix is  the  expected  5  units  and  also  note  the  differences  in 

percentages of ingredients.
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 2.4. Thermo-physical Properties

Eqs. 2.8 to 2.10 are taken from Choi & Okos (1986). Unless otherwise stated, T are in °C.

 2.4.1. Specific heat capacity (Cp)

CpWater=4.1289−9.0864⋅10−5⋅T+5.4731⋅10−6⋅T 2

CpProtein=2.0082+1.2089⋅10−3⋅T−1.3129⋅10−6⋅T 2

CpLipid=1.9842+1.4733⋅10−3⋅T – 4.8008⋅10−6⋅T 2

CpCHO=1.5488+1.9625⋅10−3⋅T – 5.9399⋅10−6⋅T 2

CpAsh=1.0926+1.8896⋅10−3⋅T−3.6817⋅10−6⋅T 2

CpSalt=0.88

(2.8)

where the unit of Cp is kJ/kg°C and Cp of salt is from Engineering Toolbox8.

 2.4.2. Thermal conductivity (k)

k Water=4.57109⋅10−1+1.7625⋅10−3⋅T−6.7036⋅10−6⋅T 2

k Protein=1.7881⋅10−1+1.1958⋅10−3⋅T−2.7178⋅10−6⋅T 2

k Lipid=1.8071⋅10−1−2.7604⋅10−4⋅T−1.7749⋅10−7⋅T 2

k CHO=2.0141⋅10−1+1.3874⋅10−3⋅T−4.3312⋅10−6⋅T 2

k Ash=3.2962⋅10−1+1.4011⋅10−3⋅T−2.9069⋅10−6⋅T 2

k Salt=5.704    at 20°C

(2.9)

where the unit of k is W/m°C and k value of salt is taken from (Riedel 1962).

 2.4.3. Density (ρ)

ρWater=997.18+3.1439⋅10−3⋅T−3.7574⋅10−3⋅T 2

ρ Protein=1329.9−5.1840⋅10−1⋅T

ρ Lipid=925.59−4.1757⋅10−1⋅T

ρCHO=1599.1−3.1046⋅10−1⋅T

ρ Ash=2423.8−2.8063⋅10−1⋅T
ρ Salt=2165

(2.10)

where the unit of ρ is kg/m3 and density of salt is found from Wikipedia9. 

Let’s see the thermo-physical properties in action:

8Engineering Toolbox, https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html 

9 Wikipedia, https://en.wikipedia.org/wiki/Sodium_chloride 
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milk = fpe.Food(water=88.13, protein=3.15, cho=4.80, lipid=3.25, ash=0.67)

print(f"cp={milk.cp()}")
print(f"rho={milk.rho()}")
print(f"k={milk.k()}")

cp=3.852 10

rho=1041.6
k=0.4569

Now let’s change the temperature to 50°C:

milk.T = 50
print(f"cp={milk.cp()}")
print(f"rho={milk.rho()}")
print(f"k={milk.k()}")

cp=3.865
rho=1033.3
k=0.494

It is seen that  ρ decreased from 1041.6 to 1033.3 kg/m3 as temperature increased from 20 to 

50°C. To see how ρmilk changes with temperature in the range of say 10 to 75°C, the following 

code is needed:

Fig. 2.3: Change of milk’s density with temperature

import scisuit.plot as plt

T = range(10, 80, 5)
rho = [milk.rho(v) for v in T]

plt.scatter(x=T, y=rho)
plt.xlabel("Temperature(°C)")
plt.ylabel("Density (kg/m3)")
plt.show()

10 Actual Python output is “cp=3.8521885907719993” which has been manually rounded for presentation purposes. Similar 
reasoning applied elsewhere as well.
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 2.5. Dielectric Properties

Dielectric properties of foods are affected by many factors, such as temperature and moisture 

content of food and frequency of the microwaves. Therefore, there are several equations for 

estimation of dielectric constant (εʹ) and loss factor (εʺ) in literature for particular food items. 

Gulati & Datta (2013) and Calay  et al. (2007) present predictive equations for certain food 

categories, such as cereal grains, meat and meat products and fruits and vegetables.

 2.5.1. Meat and meat products

If the meat contains salt (0-6%) and T (°C)=[0, 70]:

ϵ '=−52−0.03T +1.2 Xw+(4.5+0.07T ) X salt

ϵ "=−22−0.013T+0.48 Xwater+(4+0.05T ) X salt
(2.11)

If the fat content (0-20%) is known and T (°C)=[-30, 0]:

ϵ '=29.3+0.076 T−0.3 Xw−0.11 X fat (2.12)

If T (°C)=[-30, 0]:

ϵ '=23.6+0.0767 T−0.231 Xw

ϵ "=9.8+0.028T−0.0117 Xw
(2.13)

If the mass fraction of ash is known:

ϵ '=Xw(1.0707−0.0018485T )+M ash 4.7947+8.5452

ϵ "=Xw(3.4472−0.01868T+0.000025T 2)+Mash(−57.093+0.23109 T )−3.5985 (2.14)

where  Xw is  the  moisture  content  (wet  basis),  Xfat and  Xsalt are  fat  and  salt  contents  in 

percentages and Mash is the mass fraction of ash.

 2.5.2. Fruits and vegetables

If f=2.45 GHz and T(°C)=[0, 70] and Xw (%)=[50, 90]:

ϵ '=2.14−0.104T +0.808 Xw

ϵ "=3.09−0.0638T+0.213 Xw
(2.15)
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If f=[0.9, 3] GHz and T (°C)=[0, 70] and Xw (%)=[50, 90]:

ϵ '=−12.8−0.103 T+0.788 Xw+5.49 f
ϵ "=10.1+0.008 T+0.221 Xw−3.53 f (2.16)

If neither of the above conditions are matched, then the following equations are used:

ϵ '=38.57+0.1255+0.456 Xw−14.54 X ash−0.0037 T Xw+0.07327 X ash T

ϵ "=17.72−0.4519 T+0.001382T 2−0.07448 Xw+22.93 Xash−13.44 Xash
2

      +0.002206 Xw T+0.1505 X ash T
(2.17)

where Xw, Xash are moisture and ash contents (%), respectively.

 2.5.3. Cereal grains

If f=[2, 3] GHz and T (°C)=[10, 30] and Xw (%)=[3, 30]:

ϵ '=1.71+0.0701 Xw

ϵ "=0.12+0.00519 Xw
(2.18)

If f=[2, 3] GHz and T (°C)=[10, 30] and Xw (%)=[3, 30]:

ϵ '=1.82+0.0621 Xw−0.0253 f
ϵ "=1.72+0.066 Xw−0.0254 f +0.0003 ρ d

(2.19)

If none of the above conditions are matched, then the following equations are used:

ϵ '=(1+
0.504 Xw ρ b

√Xw+logf )
2

ϵ "=0.146ρ b
2+0.004615 Xw

2 ρ b
2(0.32 log( f )+1.743 / log( f )−1)

(2.20)

where f is the frequency and ρb is the bulk density (kg/m3).
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 2.6. Water Activity

The definition of water activity (aw) is (Scott 1953):

Water activity= Water vapor pressure of food
Water vapor pressure of pure water (2.21)

It is seen from Eq. (2.21) that, aw is not directly related to the amount of ingredients but more 

to how ingredients bind the water which can be through various mechanisms. Therefore, to 

accurately estimate aw a truly finer detail of knowledge on ingredients is required than the 

definition of Food object presented in section 2.1. However, it is still possible to estimate a 

rough value of  aw using the predictive equations. Several equations for prediction of water 

activity are listed in the book by Barbosa-Cánovas  et al. (2007). Since we will be using the 

term solute actively in this section, let’s first define it:

Solute=CHO+lipid+ protein+ash (2.22)

 2.6.1. Raoult’s law

Raoult’s law is the basic equation for computing aw of ideal solutions (Şahin and Sumnu 2006):

aw=
Xw

Xw+(M w

M s
)⋅X s

(2.23)

where X is the mass fraction and subscripts w and s denotes water and solute, respectively, and 

M stands for molecular weight. scisuit uses a slightly modified version of Eq. (2.23):

aw=
Xw

Xw+(M w

M s
)⋅X s+2⋅( Mw

M salt
)⋅X salt

(2.24)
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 2.6.2. Money-Born equation

The equation is proposed by Money and Born (1951) and is used for calculating aw of sugar 

confections, such as jams, fondant creams and boiled sweets (Barbosa-Cánovas et al. 2007).

aw=
1

1+0.27 n (2.25)

where n is defined as:

n=
mCHO

180.16

(2.26)

Note from Eq. (2.26) that scisuit assumes that CHO is made up of fructose (molecular weight 

of fructose is 180.16 g/mol).

 2.6.3. Norrish equation

Proposed by Norrish  (1966)  and is  useful  for  large  concentrations  of  solute  and used  for 

non-electrolyte solutions containing both single and multiple solutes (Barbosa-Cánovas et al. 

2007). In generalized form the equation can be expressed as:

ln aw=ln X H 2 O+∑ K i(X i)
2

∑ (X i)
2

⋅(1−X w)
2

(2.27)

where X is the mole fraction and K is the empirical constant for the solute.

 2.6.4. Ferro Fontan-Chirife-Boquet equation

Developed by Fontan et al. 1981 (Barbosa-Cánovas et al. 2007). 

aw=Xw [eKm⋅X s
2] (2.28)

where  Xw and  Xs is mole fraction of water and solute, respectively, and  K is the correlating 

constant for the solute. To compute the mole fractions, it  was assumed that the amount of 

fructose,  glycerol  and  alanine  were  equal  to  the  amount  of  CHO,  lipid  and  protein, 

respectively.  Thus,  the  mole  number  (n)  for  CHO (nCHO)  was  computed  using  Eq.  (2.26), 

whereas nLipid and nProtein were computed using the following equation:
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nLipid=
mLipid

92.0944
  and  nProtein=

mProtein

89.09
(2.29)

Km in Eq. (2.28) was computed using Ferro Fontan-Chirife-Boquet equation as follows:

K m=∑
s=1

n

K s C s[ Ṁ
M s

] (2.30)

where KCHO,  KLipid and KProtein are -2.15, -1.16 and -2.52 respectively.  Cs is the weight ratio of 

solute s to total solids. Ṁ (average molecular weight) in Eq. (2.30) is expressed as:

Ṁ=√∑s=1

n

( C s

M s
) (2.31)

 2.6.5. Change of aw with temperature

To take  into  account  the  change  of  aw with  temperature,  a  modified  version  of  Clausius-

Clapeyron equation was used:

d ln (aw)
d 1/T

=
−Q s

R
(2.32)

where R is the universal gas constant (kPa·m3/kg·K) and Qs is known as the moisture binding 

energy and several of them are tabulated by Iglesias and Chirife (1982). It should be noted that  

the values of Qs greatly vary for different food items. Discretization of Eq. (2.32) gives,

ln
(aw2)
(aw1)

1
T 2

− 1
T 1

=
−Q s

R
(2.33)

Since values of Qs varies greatly an attempt was made to guess the desired energy:

Q s=maverage⋅Cpaverage⋅ΔT (2.34)

where  maverage was computed based on average molecular weight and  ΔT is the temperature 

difference,  the  difference  between  food’s  current  temperature  and  its  default  temperature 

(20°C).
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 2.6.6. Method selection for aw prediction

Before attempting to use any of the above equations, the following checks are made:

1. %water < 1 or %water > 99.99 → aw=0.01 or aw=0.999

2. %CHO>98 → aw=0.70

3. 0<Solute<1% → aw=0.99

If none of the above matches, then the following are checked:

1. If the food belongs to the group, namely Sweet, Money-Born equation is used.

2. If %salt ≥1 or %water≥90  → Raoult’s law is used.

If  the  last  two  conditions  are  not  satisfied,  then  the  amount  of  solute  is  computed:  if  

%solute ≥70 → Norrish equation is used.

If neither of the above conditions are met then Ferro Fontan-Chirife-Boquet equation is used.
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 3. APPLICATIONS

 3.1. Material Balance

Background 

Material balance calculations are commonly used for formulating products from available raw 

materials, evaluating final compositions, processing yields, etc. (Toledo 2007).

In this section 3 examples will be presented. In the first example, we are interested in finding 

the final composition (output) of the food item from the given inputs, whereas in the 2nd and 3rd 

ones, the interest is to find the amount of input to obtain the requested output.

First example is straightforward and fairly intuitive whereas second example requires some 

counter-intuitive approach. For both examples there are two food items, namely A and B and 

compositions are as follows:

1. Food A (15% protein, 20% fat, 63% water),

2. Food B (3% protein, 80% fat, 15% water)

Let’s form two food objects from the above-given compositions:

import scisuit.eng.fpe as fpe

A = fpe.Food(protein=15, water=63, lipid=20)
B = fpe.Food(protein=3, water=15, lipid=80)

Note that the percentages do not exactly add up to 100%.

Example 3.1.1 

What would be the final composition if 90 kg of A and 10 kg of B are mixed?

Solution:  Knowing  that  the  final  weight  will  be  100  kg,  we  can  use  the  following 

straightforward approach:

C = 90*A + 10*B
print(C)

water (%) = 59.39
protein (%) = 14.08
lipid (%) = 26.53
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Example 3.1.2 

What is the required amounts of  A and  B to make a 100 kg of final product which contains 

26.5% of fat? 

Solution:

Note that the question is the opposite of Example (3.1.1) such that the final composition is 

given but the amounts of inputs are queried.

The code to solve this is very short but requires some care, first let’s look at the code:

C = 0.265*fpe.Food(lipid=1)
amounts = C.makefrom([A, B])

print(amounts)

[0.9005, 0.0995]

which means ~90 kg A and ~10 kg B should be used. 

Things to note:

1. C contains other ingredients (Ex. 3.1.1), but it was defined as only containing lipid and 

fat content was to be 26.5%, however, was defined as 100% fat.

2. Although the final weight of mixture is 100 kg, it was not explicitly used in the code.

Let’s take a look under the hood and see how makefrom member function works:

1. Solves the equation A⋅x=b where the first row of A is all 1 and first entry of b is 1.

2. The 2nd, 3rd and so forth rows of A are based on the ingredients the food object has. So 

if it has only lipid, then 2nd row of A will be amount of lipid from each input food item 

and the second entry of b will be amount of lipid times its weight. Therefore, the linear 

system formed for this example is:

[ 1 1
0.2 0.8]⋅[ A

B ]=[ 1
1×0.265] 

Notice that n ingredients in the target food requires n+1 input foods.

3. Each entry of the vector, namely x, is between 0.0 and 1.0. However, it should be rather 

straightforward to scale it up to actual amounts.
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Example 3.1.3 

Determine the amounts of meat, fat, and water that must be used to make 100 kg of a sausage 

formulation (adapted from Toledo 2007). 

1. Meat: 14% fat, 67% water, 19% protein, 

2. Fat: 89% fat, 8% water, 3% protein, 

3. Sausage: 20% fat, 65% water, 15% protein.

Solution:

This is a slightly more complex example than Example  3.1.2 and solution by hand can be 

error-prone (see Toledo 2007 page 81). 

import scisuit.eng.fpe as fpe

#defining inputs
meat = fpe.Food(lipid=14, water=67, protein=19)
fat =fpe.Food(lipid=89, water=8, protein=3)
water = fpe.Food(water=100)

#target food
sausage = 85/100*fpe.Food(lipid=20, water=65) # 85/100 is to circumvent auto-adjustment

amounts = sausage.makefrom([meat, fat, water])
print(amounts)

[0.7732, 0.1031, 0.1237]

Therefore, approximately 77.3 kg meat, 10.3 kg fat and 12.4 kg water are needed to make 100 

kg of sausage.

Notice that although sausage had 3 ingredients (fat, protein and water), only 2 of them, lipid 

and water, were used. Had we used protein instead of water in the definition of sausage, then 

there would have been a Runtime Error(“List contains food items that has no common ingredient 

with the target”). 

Furthermore, in section 2.1, it was mentioned that when the sum of ingredients do not add up 

to 100%, it is automatically adjusted to 100%. In order to circumvent this auto-adjustment, in  

the assignment phase of sausage, the constructed food object was multiplied by 85/100.
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 3.2. Energy Balance

Background

Energy balance on a system is based on the first  law of thermodynamics.  Energy balance 

calculations are used in almost all operations from evaporators, dryers to microwaves.

Example

Calculate the heat required to raise the temperature of a 4.535 kg roast containing 15% protein, 

20% fat, and 65% water from 4.44 to 65.55°C. 

Solution:

Before we proceed with the details, let’s construct the food object:

import scisuit.eng.fpe as fpe

roast = fpe.Food(protein=15, lipid=20, water=65)
m = 4.535 #kg 
t1, t2 = 4.44, 65.55 #°C
dT = t2-t1

The solution is fairly simple and all needed is to apply the following equation:

Q=m⋅C p⋅ΔT (3.1)

However, before applying Eq. (3.1), let’s see how Cp changes with temperature.

Fig 3.1: Change of roast’s Cp with temperatures

import scisuit.plot as plt
T = range(10, 80, 5)
cp = [roast.cp(v) for v in T]

plt.scatter(x=T, y=cp)
plt.xlabel("Temperature(°C)")
plt.ylabel("Cp (kJ/kg°C)")
plt.show()
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It is seen from Fig  3.1 that the Cp of roast increases with temperature, although in a very 

narrow range. Therefore, either Eq. (3.1) can be used as is or can be modified to take into 

account the change of Cp with temperature:

Q=m⋅
Cp(T 1)+Cp(T 2)

2
⋅(T 2−T 1) (3.2)

Application of Eq. (3.1):

Q= m*roast.cp()*dT
print(f"Heat required: {Q} kJ")

Heat required: 939.8 kJ

Application of Eq. (3.2):

Cp_avg = (roast.cp(t1) + roast.cp(t2))/2.0

Q= m*Cp_avg*dT
print(f"Heat required: {Q} kJ")

Heat required: 942.7 kJ

Since Cp was nearly linear and changed in a very narrow range (see Fig. 3.1), as expected there 

was almost no difference in the required energy computed using Eqs. (3.1) or (3.2).

Using  Siebel’s  equation  (Eq.  3.3),  Toledo  (2007)  estimated  Cp as  3.182  kJ/kg·K  and  the 

required heat as ~882 kJ.

Caverage=1674.72 F+837.36 SNF+4186.8 M (3.3)

where unit of Caverage is J/kg·K and F, SNF and M are mass fractions of fat, solids non-fat and 

moisture, respectively.

from scisuit.eng.fpe import Cp

cp = Cp(roast)

Q= m*cp.Siebel()*dT
print(f"Heat required: {Q} kJ")

Heat required: 881.8 kJ
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 3.3. Freezing

Background

Cooling is a fundamental operation in food processing and preservation (Toledo 2007). Above 

the freezing point, enthalpy (h) consists of sensible energy; however, below freezing point,  h 

consists of both sensible and latent energy (ASHRAE 2006).

 3.3.1. Unfrozen food

If  the  temperature  is  above  freezing  point  then  the  enthalpy  can  be  computed  using  the 

following equation (Chen 1985):

H=H f +(T−T f )⋅(4.19−2.30 x s – 0.628 xs
3) (3.4)

where H is the enthalpy (kJ/kg), Hf is the enthalpy at initial freezing temperature (kJ/kg), T is 

the temperature and  Tf is the initial freezing temperature and  xs is the mass fraction of food 

solids.

Hf can be computed using Chang and Tao (1981) equation:

H f =9.79246+405.096⋅xw 0 (3.5)

where xw0 is the mass fraction of water above initial freezing point.

 3.3.2. Frozen food

The temperature is below freezing point and the enthalpy can be computed using the following 

equation (Chen 1985; ASHRAE 2006).

H=(T−T r)⋅[1.55+1.26 xs –
(xw 0−xb)L0T f

T r⋅T ] (3.6)

where  Lo is the latent heat of fusion of water = 333.6 kJ/kg,  Tr is the reference temperature 

(typically -40°C) and  xb is  mass fraction of bound water and can be computed as follows 

(Schwartzberg 1976; ASHRAE 2006).
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xb=0.4 x p (3.7)

where xp is the mass fraction of protein.

 3.3.3. Estimation of initial freezing temperature

Chang  and  Tao  (1981)  developed  the  following  equations  to  estimate  the  initial  freezing 

temperature (in K) of food items (ASHRAE 2006):

Meat group: 

T f=271.18+1.47 x w0 (3.8)

Fruit/Vegetable Group:

T f=287.56−49.19 xw 0+37.07 xw 0
2

(3.9)

Juice Group:

T f=120.47+327.35 xw 0 – 176.49 xw 0
2

(3.10)

 3.3.4. Estimation of ice fraction

Predicts the mass fraction of water that has crystallized below the initial freezing point, which 

is  a  function  of  temperature  (ASHRAE  2006).  Tchigeov  (1979)  developed  the  following 

equation:

x ice=
1.105 xw0

1+ 0.7138
ln (T f – T+1)

(3.11)

Example 3.3.1

A 150  kg  beef  carcass  (57.26% water,  17.32% protein,  24.05% fat)  is  to  be  frozen  to  a 

temperature of –20°C. The initial temperature of the carcass is 10°C. How much heat must be 

removed? (adapted from ASHRAE 2006).
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Solution:

The initial  freezing point of  Tf is -1.7°C (ASHRAE 2006). Let’s first  define the givens in 

Python language.

import scisuit.eng.fpe as fpe

carcass = fpe.Food(water=57.26, protein=17.32, lipid=24.05)
m = 150 #kg
Tf = -1.7

In order  to  compute the amount  of  heat  removal  enthalpy at  both frozen (-20°C<Tf)   and 

unfrozen (10°C>Tf) state must be known. 

carcass.T = 10
h10 = carcass.enthalpy(Tf) 

carcass.T = -20
h_20 = carcass.enthalpy(Tf)

Q = m*(h10 - h_20) #kJ
print(Q)

35004.1

Note  that  behind the  scenes  enthalpy of  unfrozen food (h10)  using  Eqs.  (3.4 &  3.5)  and 

enthalpy of frozen food (h_20) was computed using Eqs. (3.6 & 3.7).

Note that the initial freezing point of Tf was found from ASHRAE (2006) as -1.7°C. When this 

information is not available Eqs. (3.8), (3.9) and (3.10) can be used. Let’s predict the initial 

freezing point of the variable, namely carcass:

carcass = fpe.Food(water=57.26, protein=17.32, lipid=24.05)

Tf = carcass.freezing_T()

NotImplementedError: Only implemented for Juice, Fruit/Veggies and Meat

The error is clear, i.e. there is no  general equation to compute the freezing point of foods; 

however, there are specialized equations to compute the freezing point of certain food groups. 

Therefore, the definition of carcass has to be modified:

carcass = fpe.Meat (water=57.26, protein=17.32, lipid=24.05)

Tf = carcass.freezing_T()
print(Tf) #°C

-1.12
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Example 3.3.2

A 150 kg beef carcass is to be frozen to -20°C. What are the masses of the frozen and unfrozen  

water at -20°C? (ASHRAE 2006)

Solution:

First the fraction of water that is frozen needs to be found, in other words the ice fraction.

carcass = fpe.Meat(water=57.26, protein=17.32, lipid=24.05)
carcass.T = -20
print(f"Frozen fraction: {carcass.x_ice(-1.12)}")

Frozen fraction: 0.5178

Total amount of water: 150×0.5726=85.89kg water.

The amount of frozen water: 150×0.52=78 kg

Unfrozen water: 85.89−78=7.89 kg.
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 3.4. Water Activity / Drying

Background

Water activity of foods is an important physical property to predict food stability and shelf life.  

For  example,  in  mathematical  modeling  during  storage  of  a  food  material,  the  storage 

conditions and packaging material can be simulated for extended shelf-life (Sahin & Sumnu 

2006).  There are several  equations to predict  the water  activity of  foods and an extensive 

discussion is presented by Barbosa-Cánovas et al. (2007).

Example 3.4.1

Predict the aw of extruded pasta at moisture content of 9% (w.b.) at 35 and 50°C (adapted from 

Heldman and Lund 2007).

Solution:

The actual values of aw at 35 and 50°C are 0.35 and 0.51, respectively.

f = fpe.Food(water=9, cho=91) 

for t in [35, 50]:
      f.T = t
      print(f"At {t}°C aw={f.aw()}")

At 35°C aw=0.32
At 50°C aw=0.41

It is seen that the computation of aw=0.32 at 35°C is reasonably close to 0.35. whereas at 50°C, 

there  is  a  deviation  of  ~0.1.  For  most  purposes  the  computational  results  of  aw might  be 

accurate enough to make some informed decisions.

Example 3.4.2

NaCl, sucrose or the NaCl-sucrose solutions are commonly used for osmotic dehydration of 

potatoes. Estimate aw of 20% sucrose solution, 20% NaCl solution and a solution containing 

10% NaCl and 10% sucrose (Sahin & Sumnu 2006).

Solution:

nacl = fpe.Food(water = 80, salt=20)
sucrose = fpe.Food(water=80, cho=20)
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solution = fpe.Food(water=80, cho=10, salt=10)

print(f"nacl = {nacl.aw()}")
print(f"sucrose = {sucrose.aw()}")
print(f"solution = {solution.aw()}")

nacl = 0.867
sucrose = 0.976
solution = 0.918

The values reported by Sahin & Sumnu (2006) are 0.867, 0.987 and 0.923 for  nacl, sucrose 

and  solution, respectively. The minor difference between the  aw’s predicted and reported by 

Sahin & Sumnu (2006) is from the fact that CHO is assumed to be made up of fructose which 

has a molecular weight of 180.16 g/mol whereas molecular weight of sucrose is 342 g/mol. 

Therefore, the difference in molecular weights will affect result computed by Eq. (2.24). Please 

see section 4 for a discussion on possible remedies to overcome such differences.

Example 3.4.3

Outside air with a relative humidity of 60 % and dew point of 1 °C will be used for drying of  

200 kg of sliced apples with an initial moisture content of 80%. The air is first heated to 50° C 

and then enters to the adiabatic dryer. The capacity of the blower is 1.5 m3/s. The exit air has a 

dew point 20 °C. Plot moisture content – aw graph and compute the required drying time to 

store it safely.

Solution:

Fig. 3.2: A sketch of the drying system

State 1: Outside air: Pressure, RH and Tdew-point 
known are known for the entering air.

State 2: Heated air: Simple heating does not 
change absolute humidity, therefore W2 = W1. 
Pressure and Tdry-bulb are known.

State 3: Exiting the dryer: In an adiabatic dryer, 
the enthalpy remains constant, therefore H3 = H2. 
Pressure and Tdew-point are known.

The givens for humid air are:

P = 101.325 #kPa
Tdp1, Tdp3 = 1, 20 #dew-point temperatures
Tdb2 = 50 #dry-bulb temperature (heating)
V_flow = 1.5 #m3/s volumetric flow rate
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Let’s define the moist-air’s 3 states and find the necessary psychrometric properties:

import scisuit.eng as eng

state1= eng.psychrometry(RH=60, Tdp=Tdp1, P=P)
w1, v1 = state1.W, state1.V #absolute humidity and specific volume

ma = V_flow/v1 #kg da/s (mass flow rate)
w2 = w1 #absolute humidity does not change during simple heating
state2 = eng.psychrometry(W=w2, Tdb=Tdb2, P=P) 
h2 = state2.H #enthalpy

h3 = h2 #enthalpy does not change in adiabatic conditions
state3 = eng.psychrometry(H=h3, P=P, Tdp=Tdp3)
w3=state3.W #absolute humidity of exiting air

In the code below, we calculate the amount of water removed from the apple at given intervals 

and then find the moisture content and water activity at each point in the interval.

apple = eng.Food(water = 80, cho = 20) #define moist apple
water = eng.Food(water=100) #define water as food (as it is removed from apple)

mc, Aw, time = [apple.water], [apple.aw()], [0]
Duration = range(30, 140, 10) #intervals in minutes to be inspected
for t in Duration:
      mwater = ma*(w3-w1)*t*60 #amount of water removed
      driedapple = 200*apple - mwater*water
 
      mc.append(driedapple.water)
      Aw.append(driedapple.aw())
      time.append(t)

All that is left is to plot a scatter chart of MC vs aw and time vs aw.

plt.scatter(y=mc, x=Aw)
plt.xlabel("water activity")
plt.ylabel("Moisture content")

plt.figure()

plt.scatter(x=time, y=Aw)
plt.xlabel("time")
plt.ylabel("water activity")

plt.show()

The above code will produce the following plots:
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Fig. 3.3: aw vs MC (w.b.) for apple

As expected as the moisture content 
decreased the water activity decreased. 

Note that until 40% moisture content, aw 
decreased very slowly but after then 
rather quickly. 

The reason for the aw to decrease slowly and then rather quickly could be the fact that different 

equations are used for different compositions.  During drying the moisture content changes 

which corresponds to  composition changes.  The following table  summarizes  the equations 

used.

Table 3.1: Predictive equations used during drying of apple slices

% MC Range Equation

80.0 - 71.48 Raoult

68.83 - 41.67 Ferro-Fontan, Chirife &Boquet

29.37 - 10.49 Norrish
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Fig. 3.4: Change of water activity with time

It is seen that after 120 minutes the apple 

slices’ water activity decreased below 0.7 

and  therefore  microbiological  and  most 

chemical  reactions  would  be  at  its 

minimum  (as  seen  from  Fig  3.5)  and 

therefore would be safe to store.

Fig. 3.5: Relative chemical& microbiological reaction rate 
as a function of water activity

Adapted  from  Barbosa-Cánovas  et 
al. (2007). 

 

Original from: Labuza TP,  
Tannenbaum SR & Karel M (1970). 
Water content and stability of low 
moisture and intermediate moisture 
foods. Journal of Food Technology, 24, 
543–550
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 3.5. Heat Transfer

Background

In heat transfer analysis, it so happens that some bodies’ interior temperature remains uniform 

throughout the heat transfer process and therefore the temperature of such bodies can be taken 

to be a function of time only, T(t) (Cengel 2002). The equation T(t) is:

ln
T (t )−T∞

T i−T∞
=

−h A s

ρ V C p

dt (3.12)

where h is the convective heat transfer coefficient, T(t) is the temperature after time t, Ti is the 

initial temperature of the body and T∞ is the temperature of the fluid. As is the surface area, V is 

the volume and ρ and Cp are density and specific heat capacity of the body respectively.

To use Eq. (3.12), Bi number, which is computed as shown below, should be less than 0.1.

Bi=
h⋅(V / A s)

k
(3.13)

where k is the thermal conductivity of the body.

The computation of convective heat transfer depends on several factors; however, for the flow 

of gas or liquid over cylinder with circular cross-section the following equations can be used 

(Cengel 2002).

Nu=C Rem Pr1/3 (3.14)

where the values for constants C and m depends on the Reynolds number. A Python function to 

compute Nusselt number in the Reynolds number range of 0.4-4000 is given below:

def Nu(Re, Pr):
      C, m = 0,0
      if 0.4 <= Re < 4:
            C , m= 0.989, 0.330
      elif 4 <= Re < 40:
            C, m = 0.911, 0.385
      elif 40 <= Re < 4000:
            C, m = 0.683, 0.466

      return C*Re**m*Pr**(1/3)
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h can be computed using the following equation:

h= Nu⋅k
Lc

(3.15)

where k is the thermal conductivity of the fluid and Lc is the characteristic length.

Example 3.5.1

Thompson  seedless  grape  with  80%  moisture  content  is  put  in  a  convective  dehydrator 

operated at 58°C and with air flow at a velocity of 0.6 m/s. The initial temperature of grape is 

26°C and its length and diameter are 29.7 and 1.9 cm, respectively. Obtain the center and 

surface temperatures of grape for the first 22 minutes (Bingol 2008). 

Solution:

Assumption: Grape is a cylinder with circular cross-section.

import scisuit.eng.fpe as fpe
import scisuit.eng as eng
import scisuit.plot as plt
from math import pi, exp

grape = fpe.Food(water=80, cho=20)

Tair, T0_grape = 58, 26 #C
V = 0.6 #m/s
D, L = 1.9 /100,  29.7/100 #m

#critical length
Lc = D / 2 

#film temperature
Tf = (Tair + T0_grape)/2 

air = eng.Air(T=Tf+273.15)

Re = (air.rho()*V*D) / air.mu()

Nu_ = Nu(Re, air.Pr())
h = Nu_*air.k() / Lc

""" Lumped Heat Capacity Analysis """
Volume = pi*(D**2/4)*L
SurfaceArea = 2*pi*D**2/4 + pi*D*L

Lc_lumped = Volume/SurfaceArea #critical length in lumped analysis
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Bi = h*Lc_lumped/grape.k()
b = h /(grape.rho()* grape.cp()*1000*Lc_lumped)

# 22 minutes, sample every minute
t_sim = range(0, 23) 
T_sim = [exp(-b*t*60)*(T0_grape - Tair) + Tair for t in t_sim]

# Experimental values
t_exp = [0, 1.007, 2.006, 3.01, 4.001, 5.009, 6.005, 7.007, 8.005, 9.002, 10.004, 11.004, 
      12.005, 13.008, 14.005, 15.002, 16.001, 17.008, 18.005, 19.005, 20.007, 21.005, 
      22.002, 22.104, 22.206, 22.309, 22.401, 22.506]

T_exp = [26.268, 28.933, 31.393, 33.828, 36.028, 38.173, 40.093, 41.778, 43.443, 44.953,
      46.208, 47.438, 48.498, 49.403, 50.308, 51.113, 51.673, 52.248, 52.873, 53.343, 53.748, 
      54.218, 54.593, 54.573, 54.588, 54.653, 54.713, 54.733]

plt.scatter(x=t_sim, y=T_sim, label="simulation")
plt.scatter(x=t_exp, y=T_exp, label="experimental")
plt.legend()
plt.show()

If  h and  Bi were printed out,  the values are 36.3 W/m2°C and 0.38.  Although  Bi>0.1,  the 

lumped heat transfer analysis can still be applied with minor errors. The accuracy of simulation 

is shown in the following figure: 

Fig 3.6: Experimental vs simulated temperature profile of 

grapes

It is seen that the accuracy of the 
prediction of experimental data by 
simulation is very well. 

The average error was 1.49°C and 
the maximum error was 2.14°C at 
t=7 min. 
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It  should  also  be  noted  that  the  simulated  temperatures  were  always  greater  than  the 

experimental ones. This could be due to the fact that experimental values presented here are the 

average of center and surface temperatures of grape. Since Bi number is 0.38, there was still 

minor thermal resistance in the body that slowed down the heat transfer to the center and 

therefore  caused  minor  thermal  gradient,  T=T(r,  t),  instead  of  a  uniform  temperature 

distribution,  T=T(t). As a result the center temperature remained slightly lower than surface 

temperature.  If,  instead,  simulated values were compared with the surface temperatures  of 

grapes, the average and maximum errors were 1.15 and 1.99°C, respectively, both of which 

were lower than the comparison with the average temperatures.
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 4. DISCUSSION

As stated in the introduction section, food is a complex material and is subjected to various 

processes. Therefore, it would be naive to assume that the current work covered all aspects of 

food processing. However, this study clearly illustrated that digitalization of food properties 

has several benefits such as shortening the amount of work and decreasing the complexity to 

model a process and thereby paving the way for more complex studies.

The construction of a food object  (section 2.1),  requires parameters such as lipid,  protein, 

CHO, salt only specified by percentages/fractions. However, it is known that there are many 

different types of lipids, proteins, CHO’s and salts. In order to take into account these finer 

details,  each of  these  macro-molecules  can be  defined as  a  Python class  as  shown in  the  

following conceptual example:

# detailed definition of CHO 
carbs = fpe.CHO(glucose = 40, fructose = 60) 

#food made of water and CHO (glucose + fructose)
food = fpe.Food(CHO = 40* carbs, water = 60)

Having the above-level of of details will increase accuracy of predictions, however, it should 

also be noted that such an attempt will also drastically increase the complexity of the overall 

work.

It was also seen that when constructing a food object, if the sum of the percentages was not 

equal to 100%, then it would have been automatically adjusted to be 100% (see section  2.1). 

Although this approach ensures that a food object is compositionally well defined, if not paid 

attention it might lead to confusions and thereby errors especially when working with mass 

balances  where  a  well-defined  food  object  is  not  necessarily  required.  Therefore,  in  the 

following versions of scisuit auto-adjustment is planned to be optional. 

It is possible to increase the accuracy of water activity predictions by including other available 

equations (such as Pitzer, Bromley, Ross, etc.). Furthermore, as shown above, including finer 

details of composition should further increase the accuracy of predictions. Thus, combined 

with  thermo-physical  properties  such estimations  would serve  the  basis  for  more  complex 

mathematical models and would be valuable when making informed decisions.
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Given  the  fact  that  programming  languages  such  as  Python,  C++ offer  many  options  for 

overloading operators (binary, arithmetic, etc.), not only the work presented here can be taken 

further but also the idea of digitalization of food properties can be extended to different types 

of materials.
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